由MTCNN关键点估计人头姿态

一、前言

      本篇主要记录由mtcnn检测得的关键点作人头姿态估计,思路较为简单,mtcnn是一种可以检测输出5个关键点的人脸检测算法,分别是左眼,右眼,鼻尖,嘴的左角和嘴的右角。当获得图像中人脸的5个2D关键点,再由Opencv中POSIT的姿态估计算法将5个世界坐标系的模板3D关键点通过旋转、平移等变换投射至这5个2D关键点,进而估计得变换参数,最后求得2D平面中的人头的姿态参数,分别为Yaw:摇头  左正右负、Pitch:点头 上负下正、Roll:摆头(歪头)左负 右正

二、Mtcnn-light

    对于mtcnn,网上具有较多开源版本,这里使用light版本,优点是速度较快,缺点为模型准确性略有下降,为输出5个关键点,对原来src/mtcnn.cpp中增加重载函数 void findFace(Mat &image , vector &resBox ); 

三、人头姿态估计

     人头姿态估计代码参考自https://blog.csdn.net/zzyy0929/article/details/78323363

#include "network.h"
#include "mtcnn.h"
#include 

#include 
#include 
#include 
#include 
#include "opencv2/opencv.hpp"

void rot2Euler(cv::Mat faceImg,const cv::Mat& rotation3_3)
{
	cv::resize(faceImg,faceImg,cv::Size(faceImg.cols*2,faceImg.rows*2));
	double q0 = std::sqrt(1+rotation3_3.at(1,1)+rotation3_3.at(2,2)+rotation3_3.at(3,3))/2;
        double q1 = (rotation3_3.at(3,2)-rotation3_3.at(2,3))/(4*q0);
	double q2 = (rotation3_3.at(1,3)-rotation3_3.at(3,1))/(4*q0);
        double q3 = (rotation3_3.at(2,1)-rotation3_3.at(1,2))/(4*q0);
	double yaw = std::asin( 2*(q0*q2 + q1*q3) );
        double pitch = std::atan2(2*(q0*q1-q2*q3), q0*q0-q1*q1-q2*q2+q3*q3);
	double roll = std::atan2(2*(q0*q3-q1*q2), q0*q0+q1*q1-q2*q2-q3*q3);
        std::cout<<"yaw:"<& facial5Pts )
{

	// 3D model points
	std::vector model_points;
        model_points.push_back(cv::Point3d(-165.0f, 170.0f, -115.0f));       // Left eye 
        model_points.push_back(cv::Point3d( 165.0f, 170.0f, -115.0f));        // Right eye
	model_points.push_back(cv::Point3d(0.0f, 0.0f, 0.0f));               // Nose tip
        model_points.push_back(cv::Point3d(-150.0f, -150.0f, -125.0f));      // Left Mouth corner
        model_points.push_back(cv::Point3d(150.0f, -150.0f, -125.0f)); 	     // Right Mouth corner

	// Camera internals
	double focal_length = faceImg.cols;
	cv::Point2d center = cv::Point2d(faceImg.cols/2,faceImg.rows/2);
	cv::Mat camera_matrix =(cv::Mat_(3,3) << focal_length, 0, center.x, 0,focal_length,center.y,0, 0,1);
        cv::Mat dist_coeffs = cv::Mat::zeros(4,1,cv::DataType::type);

	cv::Mat rotation_vector;
	cv::Mat translation_vector;

	cv::solvePnP(model_points,facial5Pts , camera_matrix, dist_coeffs,rotation_vector, translation_vector);
	
	/*投影一条直线而已
	std::vector nose_end_point3D;
	std::vector nose_end_point2D;
	nose_end_point3D.push_back(cv::Point3d(0,0,1000.0));

        projectPoints(nose_end_point3D, rotation_vector, translation_vector,camera_matrix, dist_coeffs, nose_end_point2D);
	//std::cout << "Rotation Vector " << std::endl << rotation_vector << std::endl;
	//std::cout << "Translation Vector" << std::endl << translation_vector << std::endl;
    
	cv::Mat temp(faceImg);
	cv::line(temp ,facial5Pts[2], nose_end_point2D[0], cv::Scalar(255,0,0), 2);
        cv::imshow("vvvvvvvv" ,temp );
	cv::waitKey(1);  */
    
	cv::Mat rotation3_3;
	cv::Rodrigues(rotation_vector,rotation3_3);
  	rot2Euler(faceImg.clone(),rotation3_3);
}

void showheadPost(const cv::Mat& img, std::vector& resBox)
{
    for( vector::iterator it=resBox.begin(); it!=resBox.end();it++){
        if((*it).exist){
		int it_x1 = (*it).y1; //这里需注意,(*it).y1表示第一个点的x坐标,(*it).x1表示y坐标
		int it_y1 = (*it).x1;
		int it_x2 = (*it).y2;
                int it_y2 = (*it).x2;
			
		const cv::Mat faceImg = img(Rect(it_x1 ,it_y1 ,it_x2-it_x1 ,it_y2-it_y1 ));
        	std::vector face5Pts;  //脸部5个点的坐标,原点坐标为(0,0)
                for(int i=0 ;i<5 ; ++i ){
			face5Pts.push_back(Point2f(*(it->ppoint+i)-it_x1 , *(it->ppoint+i+5)-it_y1 ));
		}
			
		headPosEstimate(faceImg , face5Pts);
			
	}	
    }
}

int main()
{
    cv::Mat img = cv::imread("ldh.jpg");
    mtcnn find(img.rows, img.cols);
    std::vector resBox;
    find.findFace(img , resBox);
    showheadPost(img,resBox);

    waitKey(0);

    return 0;
}

四、实验结果

    载入两张图片实验,结果如下所示,可以评估侧脸程度,不过失败时会出现nan的计算

由MTCNN关键点估计人头姿态_第1张图片

由MTCNN关键点估计人头姿态_第2张图片



你可能感兴趣的:(opencv)