python爬虫实战:《星球大战》豆瓣影评分析

#################更新于2018.2.2.彻底搞定小问题。开心############################
'''

Windows 7 系统
Sublime text 编辑器
Python3.5.3
''' 
from urllib import request				#request 是抓取网页数据的库
from bs4 import BeautifulSoup as bs	#beautifulsoup库对html代码进行解析
import re  							#引入正则表达式
import jieba						#分词包库jieba,可以将中文语句拆解成一个个的词汇。
import pandas as pd 
import matplotlib.pyplot as plt
import matplotlib
import numpy    #numpy计算包

from wordcloud import WordCloud 					#词云包



#打开星球大战的主页,爬取HTML文件,发现评论在
下面,对这个标签进行解析 requrl = 'https://movie.douban.com/subject/' + '25808075' + '/comments' + '?' +'status=P' resp = request.urlopen(requrl) html_data = resp.read().decode('utf-8') soup = bs(html_data, 'html.parser') comment_div_lists = soup.find_all('div', class_ = 'comment') eachCommentList = [] for item in comment_div_lists: if item.find_all('p')[0].string is not None: #p标签下面存放了网友对电影的评论 eachCommentList.append(item.find_all('p')[0].string) #print(eachCommentList) #进行数据清洗 #为了方便数据清洗,我们把列表中的内容放在一个字符串中 comments = '' for k in range(len(eachCommentList)): comments += (str(eachCommentList[k])).strip() #print(comments) #清除数据中的标点符号。正则表达式。短小精悍的一个模式[\u4e00-\u9fa5]+即可匹配。将非中文字符彻底清理 pattern = re.compile(r'[\u4e00-\u9fa5]+') filterdata = re.findall(pattern, comments) cleaned_comments = ''.join(filterdata) #放入一个字符串中,成为一个字符串 #print(cleaned_comments) #这里是用的是lcut()方法,能将中文字符串拆解成一个列表,每项都是一个词。 segment = jieba.lcut(cleaned_comments) #print(segment) #处理词汇的聚合问题,统计词频而已 words_df = pd.DataFrame({'segment':segment}) #print(words_df.head()) #查看segment和words_df的内容不是words_df.head()内容 #去掉其中的高频词,没意义的词语,看”、“太”、“的”等虚词(停用词)。由于这些词汇中,有很多词是没有实际分析价值的,所以我们需要利用一个停词文件来将不必要的词处理掉。 stopwords = pd.read_csv("D:\ST\Python_work\stopwords.txt", index_col = False, quoting = 3, sep = "\t", names = ['stopword'], encoding = 'utf-8') words_df = words_df[~words_df.segment.isin(stopwords.stopword)] #print(words_df) #统计词频 words_stat = words_df.groupby(by = ['segment'])['segment'].agg({"计数":numpy.size}) words_stat = words_stat.reset_index().sort_values(by = ["计数"], ascending = False) #print(words_stat) #第三阶段:用词云显示效果,simhei.ttf字符格式,类似宋体之类的 wordcloud = WordCloud(font_path = "simhei.ttf", background_color = "white", max_font_size = 80) #设置字体属性 #word_frequence 为字典类型,可以直接传入wordcloud.fit_words() word_frequence = {x[0]:x[1] for x in words_stat.head(1000).values} wordcloud = wordcloud.fit_words(word_frequence) plt.imshow(wordcloud) plt.axis("off") plt.show() #原文来自https://mp.weixin.qq.com/s/ukf-rormz5VnDgqa6uswJQ

 
  
#############################以下是旧版本,有问题,供参考,写于2017.12.01######################
#这个文档主要是我根据公众号文章一步步分析写出来的,但是还有问题,无法得到云图。
#原文来自https://mp.weixin.qq.com/s/ukf-rormz5VnDgqa6uswJQ
#具体问题是:#%matplotlib inline 无法搞定。
#据说需要用这个编辑器Jupyter Notebook来运行此程序,后来又报错,听说是版本问题。但依旧没有搞定,有能够借助我这篇文章搞定爬虫的可以联系我

from urllib import request				#request 是抓取网页数据的库
from bs4 import BeautifulSoup as bs	#beautifulsoup库对html代码进行解析
import re  							#引入正则表达式
import jieba						#分词包
import pandas as pd 
import matplotlib.pyplot as plt
#%matplotlib inline
import matplotlib
import numpy    #numpy计算包

matplotlib.rcParams['figure.figsize'] = (10.0, 5.0)
from wordcloud import WordCloud 					#词云包
'''
#第一步要对网页进行访问,python中使用的是urllib库
file1 = 'zhanlang.txt'
resp = request.urlopen('https://movie.douban.com/cinema/nowplaying/shenzhen/')
html_data = resp.read().decode('utf-8')
#print(html_data)

#第二步,需要对得到的html代码进行解析,得到里面提取我们需要的数据。
soup = bs(html_data, 'html.parser')			
nowplaying_movie = soup.find_all('div', id = 'nowplaying')		#div nowplaying 是我们需要的数据,里面有电影名称等数据
nowplaying_movie_list = nowplaying_movie[0].find_all('li', class_ = 'list-item')
#print(nowplaying_movie_list)

#循环得到电影ID和名字。data-subject 里面是电影ID, img 标签alt属性里面放了电影名称
nowplaying_list = []
for item in nowplaying_movie_list:
	nowplaying_dict = {}
	nowplaying_dict['id'] = item['data-subject']
	for tag_imag_item in item.find_all('img'):
		nowplaying_dict['name'] = tag_imag_item['alt']
		nowplaying_list.append(nowplaying_dict)
#print(nowplaying_list)
'''

#+ nowplaying_list[0]['id']
#打开星球大战的主页,爬取HTML文件,发现评论在
下面,对这个标签进行解析 requrl = 'https://movie.douban.com/subject/' + '25808075' + '/comments' + '?' +'status=P' resp = request.urlopen(requrl) html_data = resp.read().decode('utf-8') soup = bs(html_data, 'html.parser') comment_div_lists = soup.find_all('div', class_ = 'comment') eachCommentList = [] for item in comment_div_lists: if item.find_all('p')[0].string is not None: #p标签下面存放了网友对电影的评论 eachCommentList.append(item.find_all('p')[0].string) #print(eachCommentList) #进行数据清洗 #为了方便数据清洗,我们把列表中的内容放在一个字符串中 comments = '' for k in range(len(eachCommentList)): comments += (str(eachCommentList[k])).strip() #print(comments) #清除数据中的标点符号 pattern = re.compile(r'[\u4e00-\u9fa5]+') filterdata = re.findall(pattern, comments) cleaned_comments = ''.join(filterdata) #print(cleaned_comments) #对产生的没有标点的评论进行词频统计,采用结巴分词,jieba segment = jieba.lcut(cleaned_comments) words_df = pd.DataFrame({'segment':segment}) #print(words_df.head()) #去掉其中的高频词,没意义的词语,看”、“太”、“的”等虚词(停用词) stopwords = pd.read_csv("stopwords.txt", index_col = False, quoting = 3, sep = "\t", names = ['stopword'], encoding = 'utf-8') words_df = words_df[~words_df.segment.isin(stopwords.stopword)] #print(words_df) #统计词频 words_stat = words_df.groupby(by = ['segment'])['segment'].agg({"计数":numpy.size}) words_stat = words_stat.reset_index().sort_values(by = ["计数"], ascending = False) #print(words_stat) #第三阶段:用词云显示效果 wordcloud = WordCloud(font_path = "simhei.ttf", background_color = "white", max_font_size = 80) #设置字体属性 word_frequence = {x[0]:x[1] for x in words_stat.head(1000).values} word_frequence_list = [] for key in word_frequence: temp = (key, word_frequence[key]) word_frequence_list.append(temp) wordcloud = wordcloud.fit_words(word_frequence_list) plt.imshow(wordcloud) ''' Hi,借群的力量请教一个Python爬虫问题 #第三阶段:用词云显示效果 wordcloud = WordCloud(font_path = "simhei.ttf", background_color = "white", max_font_size = 80) #设置字体属性 word_frequence = {x[0]:x[1] for x in words_stat.head(1000).values} word_frequence_list = [] for key in word_frequence: temp = (key, word_frequence[key]) word_frequence_list.append(temp) wordcloud = wordcloud.fit_words(word_frequence_list) plt.imshow(wordcloud) 这句 wordcloud = wordcloud.fit_words(word_frequence_list) 出了问题AttributeError: 'list' object has no attribute 'items' 原文来自https://mp.weixin.qq.com/s/ukf-rormz5VnDgqa6uswJQ


 
 

你可能感兴趣的:(python项目)