- happy-llm 第一章 NLP 基础概念
weixin_38374194
自然语言处理人工智能学习
文章目录一、什么是NLP?二、NLP发展三大阶段三、NLP核心任务精要四、文本表示演进史1.传统方法:统计表征2.神经网络:语义向量化课程地址:happy-llmNLP基础概念一、什么是NLP?核心目标:让计算机理解、生成、处理人类语言,实现人机自然交互。现状与挑战:成就:深度学习推动文本分类、翻译等任务达到近人类水平。瓶颈:歧义性、隐喻理解、跨文化差异等。二、NLP发展三大阶段时期代表技术核心思
- [AI笔记]-LLM中的3种架构:Encoder-Only、Decoder-Only、Encoder-Decoder
Micheal超
AI笔记人工智能笔记架构
一、概述架构描述特点案例Encoder-Only仅包含编码器部分这类模型主要专注输入数据中提取特征或上下文信息,通常不需要生成新内容、只需要理解输入的任务,如:分类(文本分类、情感分析等)、信息抽取、序列标注等。在这种架构中,所有的注意力机制和网络层都集中在编码输入数据上,其输出通常是关于输入的复杂语义表示。谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4Decoder-Only也被称为
- 07-Seq2Seq英译法案例
郜太素
自然语言处理人工智能nlp自然语言处理word2vec机器翻译分类
Seq2Seq英译法案例1任务目的:目的:给定一段英文,翻译为法文典型的文本分类(token分类)任务:每个时间步去预测应该属于哪个法文单词2数据格式注意:两列数据,第一列是英文文本,第二列是法文文本,中间用制表符号"\t"隔开iamfrombrazil.jeviensdubresil.iamfromfrance.jeviensdefrance.iamfromrussia.jeviensderus
- RNN人名分类器案例
RNN人名分类器案例1任务目的:目的:给定一个人名,来判定这个人名属于哪个国家典型的文本分类任务:18分类---多分类任务2数据格式注意:两列数据,第一列是人名,第二列是国家类别,中间用制表符号"\t"隔开AngChineseAuYongChineseYuasaJapaneseYuharaJapaneseYunokawaJapanese3任务实现流程1.获取数据:案例中是直接给定的2.数据预处理:
- 基于机器学习的智能文本分类技术研究与应用
在当今数字化时代,文本数据的爆炸式增长给信息管理和知识发现带来了巨大的挑战。从新闻文章、社交媒体帖子到企业文档和学术论文,海量的文本数据需要高效地分类和管理,以便用户能够快速找到所需信息。传统的文本分类方法主要依赖于人工规则和关键词匹配,这些方法不仅效率低下,而且难以应对复杂多变的文本内容。近年来,机器学习技术的快速发展为文本分类提供了一种高效、自动化的解决方案。一、机器学习在文本分类中的应用概述
- 【深度学习解惑】如果用RNN实现情感分析或文本分类,你会如何设计数据输入?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn分类人工智能机器学习神经网络
以下是用RNN实现情感分析/文本分类时数据输入设计的完整技术方案:1.引言与背景介绍情感分析/文本分类是NLP的核心任务,目标是将文本映射到预定义类别(如正面/负面情感)。RNN因其处理序列数据的天然优势成为主流方案。核心挑战在于如何将非结构化的文本数据转换为适合RNN处理的数值化序列输入。2.原理解释文本到向量的转换流程:原始文本分词建立词汇表词索引映射词嵌入层序列向量关键数学表示:词嵌入表示:
- 中文工单分类模型选择
SugarPPig
人工智能分类人工智能数据挖掘
采用基于预训练模型的微调(Fine-tuning)方案来做中文工单分类,这是非常明智的选择,因为预训练模型已经在大量中文语料上学习了丰富的语言知识,能大幅提升分类效果。在HuggingFace上,针对中文文本分类,我为你推荐以下最合适的模型:最推荐的模型:BERT-base-chinese模型名称(HuggingFaceID):google-bert/bert-base-chinese为什么推荐它
- 使用LangChain与Solar进行文本嵌入
Zbb159
langchain
使用LangChain与Solar进行文本嵌入在处理自然语言处理中,文本嵌入是将文本转换为数字向量的一种技术,它使计算机能够理解和处理文本数据。在这篇文章中,我们将探索如何使用LangChain与Solar进行文本嵌入。技术背景介绍文本嵌入可以用于多种自然语言处理任务,例如文本分类、情感分析和语义搜索等。Solar是一种简单易用的嵌入服务,提供了强大的推理能力,可以轻松地将文本转换为嵌入向量。核心
- 预训练语言模型
lynnzon
语言模型人工智能自然语言处理
1.1Encoder-onlyPLMEncoder-only架构是Transformer的重要分支,专注于自然语言理解(NLU)任务,核心代表是BERT及其优化模型(RoBERTa、ALBERT)。其特点是:仅使用Encoder层:堆叠多层TransformerEncoder,捕捉文本双向语义。预训练任务:通过掩码语言模型(MLM)学习上下文依赖。应用场景:文本分类、实体识别、语义匹配等NLU任务
- 一起学习swin-transformer(一)
Vertira
pytorch学习transformer深度学习
Transform学习链接从零开始设计Transformer模型(1/2)——剥离RNN,保留Attention-CSDN博客Transformer-PyTorch实战项目——文本分类_transformer文本分类pytorch-CSDN博客从零开始设计Transformer模型(2/2)——从Attention层到transformer网络_trasformer输入矩阵,吐出一个矩阵?-CSD
- 深度学习Day-38:Pytorch文本分类入门
Point__Nemo
深度学习自然语言处理人工智能
本文为:[365天深度学习训练营]中的学习记录博客原作者:[K同学啊|接辅导、项目定制]任务:了解文本分类的基本流程学习常用数据清洗方法学习如何使用jieba实现英文分词学习如何构建文本向量1.前期准备1.1环境安装pipinstalltorchvision==0.15.0pipinstalltorchaudio==2.0.1pipinstalltorch==2.0.01.2加载数据importt
- 自然语言处理之文本分类:Transformer:文本分类数据集分析
zhubeibei168
自然语言处理自然语言处理分类transformer数据挖掘人工智能支持向量机
自然语言处理之文本分类:Transformer:文本分类数据集分析自然语言处理基础NLP概述自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,专注于使计算机能够理解、解释和生成人类语言。NLP技术广泛应用于文本分类、情感分析、机器翻译、问答系统、语音识别等场景。其核心挑战在于理解语言的复杂性和多义性,以及处理大
- 人工智能-准确率(Precision)、召回率(Recall) 和 F1 分数
高效匠人
人工智能人工智能
嗯,用户让我详细解释准确率、召回率和F1分数这三个概念在大模型中的应用。首先,我需要确认自己对这些概念的理解是否正确。准确率(Precision)是指预测为正类中实际为正的比例,召回率(Recall)是实际正类中被正确预测的比例,而F1分数是两者的调和平均数。不过,用户提到的是“大模型”,可能指的是像GPT这样的大型语言模型,所以需要考虑这些指标在自然语言处理任务中的具体应用场景,比如文本分类、实
- 【机器学习】机器学习重要分支——集成学习:理论、算法与实践
E绵绵
Everything机器学习集成学习算法pythonAIGC人工智能应用
文章目录引言第一章集成学习的基本概念1.1什么是集成学习1.2集成学习的类型1.3集成学习的优势第二章集成学习的核心算法2.1Bagging方法2.2Boosting方法2.3Stacking方法第三章集成学习的应用实例3.1图像分类3.2文本分类第四章集成学习的未来发展与挑战4.1模型多样性与集成策略4.2大规模数据与计算资源4.3集成学习的解释性与可视化结论引言集成学习(EnsembleLea
- 资深Java工程师的面试题目(八)AI大模型
刘一说
后端技术栈JavaAI自说java面试人工智能
以下是针对Java面试者的AI大模型相关题目,涵盖基础理论、实际应用、代码实现和部署优化等方向:一、基础理论类题目1.Transformer架构与应用场景题目:请说明Encoder-Only、Decoder-Only和Encoder-Decoder架构的区别,并举例说明它们在AI大模型中的典型应用场景。解析:Encoder-Only(如BERT):用于理解型任务(如文本分类、问答系统)。原理:通过
- 自然语言处理分类
要奋斗呀
自然语言处理
NLP学习Nlp基本分类NLP领域的任务分为两个类别:第一类是人工智能NLP。包括词性标注,分词,语法解析,语言模型,信息检索,信息抽取,语义表示,文本分类。这些任务发展较为成熟,各种相关工作的主要目的是提高当前模型的性能。第二类是人工智障NLP。包括机器翻译,对话系统,问答系统。目前模型的性能尚不尽如人意,有些任务上甚至没有足够多的,真正有影响力的工作。一、文本分类--情感分类1.定义情感分类是
- 自然语言处理文本分类
愚者大大
NLP自然语言处理分类人工智能
一、文本分类基础定义:将文本文档或句子分类到预定义类别,包括单标签多类别(如新闻分娱乐/体育)和多标签多类别(如文档同时属“相机”“芯片”类)。基准公开数据集|Dataset|Type|Labels|Size(train/test)|Avg.length||---------|------|--------|------------------|-------------||SST|情感|5/2|
- SpringBoot项目接入DeepSeek指南:从零开始实现AI能力整合
cyc&阿灿
springboot人工智能后端
一、DeepSeek简介与应用场景DeepSeek是国内领先的人工智能大模型平台,提供强大的自然语言处理能力。通过API接入,开发者可以快速为应用添加以下AI功能:智能问答系统:构建知识库驱动的问答机器人内容生成:自动生成文章、摘要、广告文案等代码辅助:代码补全、解释、翻译和优化文本处理:情感分析、关键词提取、文本分类等二、准备工作2.1获取DeepSeekAPI密钥访问DeepSeek官网注册开
- 基于bert预训练模型transformer架构的中文文本多标签分类的双向语义理解。
基于bert预训练模型transformer架构的中文文本多标签分类的双向语义理解。文章目录1.安装必要的库2.数据准备3.模型定义4.训练模型5.评估模型6.部署与应用概述:BERT多标签中文文本分类系统是一款先进的自然语言处理工具,专为中文文本分析和多标签分类设计。该系统利用BERT模型的强大能力,能够精确地对中文文本进行多维度的标签分类,广泛应用于内容管理、信息检索、情感分析等领域。主要特性
- BERT 模型微调与传统机器学习的对比
MYH516
bert机器学习人工智能
BERT微调与传统机器学习的区别和联系:传统机器学习流程传统机器学习处理文本分类通常包含以下步骤:特征工程:手动设计特征(如TF-IDF、词袋模型)模型训练:使用分类器(如SVM、随机森林、逻辑回归)特征和模型调优:反复调整特征和超参数BERT微调流程BERT微调的典型流程:预训练:使用大规模无标注数据预训练BERT模型数据准备:将文本转换为BERT输入格式(tokenize、添加特殊标记)模型微
- 传统机器学习与大模型 + Prompt 的对比示例
MYH516
机器学习prompt自然语言处理
下面两段代码分别展示了传统机器学习和大模型+Prompt在文本分类任务上的实现方式,帮助你直观感受两者的差异。传统机器学习方法(使用BERT微调)traditional-ml-text-classification传统机器学习文本分类实现importtorchfromtorch.utils.dataimportDataset,DataLoaderfromtransformersimportBert
- NLP-文本表示
Carrie_Lei
NLP自然语言处理人工智能
文本表示(TextRepresentation)是自然语言处理(NLP)中的一个关键步骤,它将文本数据转换为机器学习模型可以理解的格式。不同的文本表示方法有助于不同的任务,如文本分类、情感分析、机器翻译等。以下是常见的文本表示方法及其简介:1.词袋模型(BagofWords,BoW)定义:将文本表示为词汇表中所有词的出现频次。忽略词的顺序和语法结构。优点:简单易懂,适用于基础文本分类任务。缺点:高
- 基于 CNN-SHAP 分析卷积神经网络的多分类预测【MATLAB】
沅_Yuan
炼丹师cnn分类matlab神经网络SHAP可解释性
在当今这个数据爆炸的时代,人工智能技术正以前所未有的速度改变着我们的生活和工作方式。特别是在图像识别、文本分类、医学诊断等领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)已成为实现高精度多分类任务的重要工具。然而,随着模型复杂度的提升,人们开始越来越关注:模型到底是如何做出决策的?它的判断依据是否合理?是否存在某些特征被过度依赖或忽略的情况?为此,一种可解释性分析
- Python爬虫实战:基于Tumblr API的图片与博文采集与下载
Python爬虫项目
python爬虫开发语言数据分析信息可视化
一、项目背景与需求分析1.Tumblr是什么?Tumblr是全球知名的轻博客平台,用户可以发布图像、短文、GIF、音频、视频等内容,是一个结合社交与创作的平台。Tumblr拥有大量优质的图片博文资源,在艺术、摄影、文学、动漫等领域尤为活跃,适合进行:图片采集和分析数据挖掘建模情感文本分类网络文学研究生成推荐系统二、技术方案与工具选型模块技术/工具API调用Tumblr官方APIv2认证方式OAut
- AI 十三、Python中,项目实战:企业知识库构建二
十方来财
ai人工智能python开发语言
进一步优化和扩展企业知识库系统,可以通过以下几个方面来提升系统的功能和性能:1.文本分类与标签生成文本分类和标签生成是提高文档检索效率的重要手段。通过机器学习模型(如scikit-learn或spaCy)对文档进行分类,我们可以自动为文档生成相关标签,并为后续的检索提供支持。1.1使用scikit-learn进行文本分类我们可以使用scikit-learn库中的TfidfVectorizer和Lo
- BERT模型原理与Fine-tuning实战指南
layneyao
aibert人工智能深度学习
BERT模型原理与Fine-tuning实战指南系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录BERT模型原理与Fine-tuning实战指南摘要引言1.BERT核心原理解析1.1Transformer架构基础1.2预训练任务设计1.3模型变体对比2.BERTFine-tuning实战指南2.1环境准备2.2文本分类任务实战2.3问答系统实战3.
- 小样本分类新突破:QPT技术详解
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython分类数据挖掘人工智能自然语言处理机器学习算法
问题导向式提示调优(QPT)这篇论文主要讲了一个针对小样本(数据量少)文本分类问题的新方法,叫问题导向式提示调优(QPT)。核心思路是让预训练语言模型(比如BERT的升级版RoBERTa)在少量标注数据下,通过设计特定的“提问式模板”和“标签词扩展技术”来提升分类效果。图1:全模型微调、掩码语言模型(MLM)和提示学习范例图示内容(a)通用微调模型(fine-tuning)输入文本直接通过预训练模
- 支持向量机SVM:从数学原理到实际应用
代码很孬写
支持向量机算法机器学习语言模型自然语言处理ai人工智能
前言本篇文章全面深入地探讨了支持向量机(SVM)的各个方面,从基本概念、数学背景到Python和PyTorch的代码实现。文章还涵盖了SVM在文本分类、图像识别、生物信息学、金融预测等多个实际应用场景中的用法。一、引言背景支持向量机(SVM,SupportVectorMachines)是一种广泛应用于分类、回归、甚至是异常检测的监督学习算法。自从Vapnik和Chervonenkis在1995年首
- MATLAB文本处理与自然语言处理方法
vipfanxu
matlab自然语言处理开发语言
自然语言处理(NaturalLanguageProcessing,简称NLP)是人工智能领域中的重要分支之一,它涉及到对自然语言的理解、生成、应用等多个方面。而MATLAB作为一种功能强大的编程语言和开发环境,也可以被用于文本处理和NLP任务。本文将介绍MATLAB中常用的文本处理和NLP方法,包括文本预处理、词袋模型、文本分类和情感分析等内容。一、文本预处理在进行文本分析之前,我们通常需要对文本
- 自然语言处理学习路线
熬夜造bug
自然语言处理(NLP)自然语言处理学习人工智能python
学习目标NLP系统知识(从入门到入土)学习内容NLP的基本流程:自然语言处理学习路线(1)——NLP的基本流程-CSDN博客语料预处理:(待更)特征工程之向量化(word——>vector):(待更)特征工程之特征选择:(待更)序列网络在NLP领域的应用(RNN、GRU、LSTM):(待更)预训练模型(ELMO、Bert、T5、GPT、Transformer):(待更)文本分类(Fasttext、
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found