使用NCE作为损失函数,SGD优化,skipGram模式
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 22 17:35:12 2017
@author: bryan
"""
import collections
import math
import os
import random
import zipfile
import numpy as np
import urllib
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
url='http://mattmahoney.net/dc/'
def maybe_download(filename,expected_bytes):
if not os.path.exists(filename):
filename,_=urllib.request.urlretrieve(url+filename,filename)
statinfo=os.stat(filename)
if statinfo.st_size==expected_bytes:
print('Found and verified', filename)
else:
print(statinfo.st_size)
raise Exception('Failed to verify '+filename+' .Can you get to it with a browser?')
return filename
filename=maybe_download('text8.zip',31344016)
def read_data(filename):
with zipfile.ZipFile(filename) as f:
data=tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
words=read_data(filename)
print('Data size',len(words))
vocabulary_size=50000
def build_dataset(words):
count=[['UNK',-1]]
count.extend(collections.Counter(words).most_common(vocabulary_size-1))
dictionary=dict()
for word,_ in count:
dictionary[word]=len(dictionary)
data=list()
unk_count=0
for word in words:
if word in dictionary:
index=dictionary[word]
else:
index=0
unk_count+=1
data.append(index)
count[0][1]=unk_count
reverse_dictionary=dict(zip(dictionary.values(),dictionary.keys()))
return data,count,dictionary,reverse_dictionary
data,count,dictionary,reverse_dictionary=build_dataset(words)
del words
print('Most common words (+UNK)',count[:5])
print('Sample data ',data[:10],[reverse_dictionary[i] for i in data[:10]])
data_index=0
def generate_batch(batch_size,num_skips,skip_window):#num_skips 为对每个单词生成多少个样本, skpi_window为单词最远可以联系的距离
global data_index
assert batch_size%num_skips==0
assert num_skips<=2*skip_window
batch=np.ndarray(shape=(batch_size),dtype=np.int32)
labels=np.ndarray(shape=(batch_size,1),dtype=np.int32)
span=2*skip_window+1
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index=(data_index+1)%len(data)
for i in range(batch_size//num_skips):
target=skip_window
targets_to_avoid=[skip_window]
for j in range(num_skips):
while target in targets_to_avoid:
target=random.randint(0,span-1)
targets_to_avoid.append(target)
batch[i*num_skips+j]=buffer[skip_window]
labels[i*num_skips+j,0]=buffer[target]
buffer.append(data[data_index])
data_index=(data_index+1)%len(data)
return batch,labels
batch,labels=generate_batch(batch_size=8,num_skips=2,skip_window=1)
for i in range(8):
print(batch[i],reverse_dictionary[batch[i]],'->',labels[i,0],reverse_dictionary[labels[i,0]])
batch_size=128
embedding_size=128 #生成的向量维度
skip_window=1
num_skips=2
valid_size=16
valid_window=100
valid_examples=np.random.choice(valid_window,valid_size,replace=False)
num_sampled=64
gragh=tf.Graph()
with gragh.as_default():
train_inputs=tf.placeholder(tf.int32,shape=[batch_size])
train_labels=tf.placeholder(tf.int32,shape=[batch_size,1])
valid_dataset=tf.constant(valid_examples,dtype=tf.int32)
with tf.device('/cpu:0'):
embeddings=tf.Variable(tf.random_uniform([vocabulary_size,embedding_size],-1.0,1.0))
embed=tf.nn.embedding_lookup(embeddings,train_inputs)
nce_weights=tf.Variable(tf.truncated_normal([vocabulary_size,embedding_size],stddev=1.0/math.sqrt(embedding_size)))
nce_biases=tf.Variable(tf.zeros([vocabulary_size]))
loss=tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=embed,
num_sampled=num_sampled,
num_classes=vocabulary_size))
optimizer=tf.train.GradientDescentOptimizer(1.0).minimize(loss)
norm=tf.sqrt(tf.reduce_sum(tf.square(embeddings),1,keep_dims=True))
normalized_embeddings=embeddings/norm
valid_embeddings=tf.nn.embedding_lookup(normalized_embeddings,valid_dataset)
similarity=tf.matmul(valid_embeddings,normalized_embeddings,transpose_b=True)
init=tf.global_variables_initializer()
num_steps=100001
with tf.Session(graph=gragh) as session:
init.run()
print("Initialized")
average_loss=0
for step in range(num_steps):
batch_inputs,batch_labels = generate_batch(batch_size,num_skips,skip_window)
feed_dict={train_inputs:batch_inputs,train_labels:batch_labels}
_,loss_val=session.run([optimizer,loss],feed_dict=feed_dict)
average_loss+=loss_val
if step% 2000==0:
if step>0:
average_loss/=2000
print('Average loss at step',step,':',average_loss)
average_loss=0
if step % 10000==0:
sim=similarity.eval()
for i in range(valid_size):
valid_word=reverse_dictionary[valid_examples[i]]
top_k=8
nearest=(-sim[i,:]).argsort()[1:top_k+1]
log_str='Nearest to %s:' % valid_word
for k in range(top_k):
close_word=reverse_dictionary[nearest[k]]
log_str='%s %s,' % (log_str,close_word)
print(log_str)
final_embeddings=normalized_embeddings.eval()
def plot_with_labels(low_dim_embs,labels,filename='tsne.png'):
assert low_dim_embs.shape[0] >= len(labels),'More labels than embeddings'
plt.figure(figsize=(18,18))
for i , label in enumerate(labels):
x,y=low_dim_embs[i,:]
plt.scatter(x,y)
plt.annotate(label,
xy=(x,y),
xytext=(5,2),
textcoords='offset points',
ha='right',
va='bottom')
plt.savefig(filename)
tsne=TSNE(perplexity=30,n_components=2,init='pca',n_iter=5000)
plot_only=100
low_dim_embs=tsne.fit_transform(final_embeddings[:plot_only,:])
labels=[reverse_dictionary[i] for i in range(plot_only)]
plot_with_labels(low_dim_embs,labels,'F:\\learning\\tf\\tsne.png')