UVALive 4271 Necklace

UVALive_4271

    这个题目一开始把这个项链描述地既详细又神奇,但是后来仔细想一下,实际上只要S和T之间能够存在一条回路,即从S出发走到T再走回来,中途不经过重复的边,那么这条回路就可以看成是满足题目描述的项链。

    想到这就好办了,为了保证路不重复用网络流就可以了,接下来就虚拟出一个源点S',连一条S'到S的容量为2的边,其余原图上的边容量都看成1,然后看S'到T的最大流是不是2就可以了。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXD 10010
#define MAXM 200010
#define INF 0x3f3f3f3f
int N, M, first[MAXD], e, next[MAXM], v[MAXM], flow[MAXM];
int S, T, q[MAXD], d[MAXD], work[MAXD];
void add(int x, int y, int z)
{
    v[e] = y, flow[e] = z;
    next[e] = first[x], first[x] = e ++;    
}
void init()
{
    int i, j, x, y;
    S = 0;
    memset(first, -1, sizeof(first[0]) * (N + 1)), e = 0;
    for(i = 0; i < M; i ++)
    {
        scanf("%d%d", &x, &y);
        add(x, y, 1), add(y, x, 1);    
    }
    scanf("%d%d", &x, &T);
    add(S, x, 2), add(x, S, 0);
}
int bfs()
{
    int i, j, rear = 0;
    memset(d, -1, sizeof(d[0]) * (N + 1));
    d[S] = 0, q[rear ++] = S;
    for(i = 0; i < rear; i ++)
        for(j = first[q[i]]; j != -1; j = next[j])
            if(flow[j] && d[v[j]] == -1)
            {
                d[v[j]] = d[q[i]] + 1, q[rear ++] = v[j];
                if(v[j] == T) return 1;    
            }
    return 0;
}
int dfs(int cur, int a)
{
    if(cur == T) return a;
    for(int &i = work[cur]; i != -1; i = next[i])
        if(flow[i] && d[v[i]] == d[cur] + 1)
            if(int t = dfs(v[i], std::min(a, flow[i])))
            {
                flow[i] -= t, flow[i ^ 1] += t;
                return t;    
            }
    return 0;
}
int dinic()
{
    int ans = 0, t;
    while(bfs())
    {
        memcpy(work, first, sizeof(first[0]) * (N + 1));
        while(t = dfs(S, INF))
            ans += t;    
    }    
    return ans;
}
void solve()
{
    printf("%s\n", dinic() == 2 ? "YES" : "NO");
}
int main()
{
    int t = 0;
    while(scanf("%d%d", &N, &M), N)
    {
        init();
        printf("Case %d: ", ++ t);
        solve();    
    }
    return 0;    
}

你可能感兴趣的:(live)