网格搜索是一种穷举搜索方法,通过循环遍历多参数的可能取值情况,性能最好的模型对应的参数就是最优参数。
代码及样本地址: https://github.com/shiluqiang/python_GridSearch-CV
本博文选用的多参数机器学习模型为非线性SVM(参考资料【1】),模型的优化问题为:
min W , e 1 2 ∥ W ∥ 2 + C 2 ∑ i = 1 m e i 2 s . t . y i ( W ⋅ φ ( x i ) + b ) ≥ 1 − e i , i = 1 , ⋯   , m e ≥ 0 , i = 1 , ⋯   , m \begin{array}{l} \mathop {\min }\limits_{W,e} \frac{1}{2}{\left\| W \right\|^2} + \frac{C}{2}\sum\limits_{i = 1}^m {{e_i}^2} \\ s.t.{y_i}\left( {W \cdot \varphi ({x_i}) + b} \right) \ge 1 - {e_i},i = 1, \cdots ,m\\ e \ge 0,i = 1, \cdots ,m \end{array} W,emin21∥W∥2+2Ci=1∑mei2s.t.yi(W⋅φ(xi)+b)≥1−ei,i=1,⋯,me≥0,i=1,⋯,m
通过Lagrange乘数法并转化为对偶问题,优化问题转换为:
min α 1 2 ∑ i m ∑ j m α i α j y i y j K ( x i , x j ) − ∑ i = 1 m α i s . t . ∑ i = 1 m α i y i = 0 0 ≤ α i ≤ C , i = 1 , ⋯   , m \begin{array}{l} \mathop {\min }\limits_\alpha \frac{1}{2}\sum\limits_i^m {\sum\limits_j^m {{\alpha _i}{\alpha _j}{y^i}{y^j}K\left( {{x_i},{x_j}} \right) - \sum\limits_{i = 1}^m {{\alpha _i}} } } \\ s.t.\sum\limits_{i = 1}^m {{\alpha _i}{y^i} = 0} \\ 0 \le {\alpha _i} \le C,i = 1, \cdots ,m \end{array} αmin21i∑mj∑mαiαjyiyjK(xi,xj)−i=1∑mαis.t.i=1∑mαiyi=00≤αi≤C,i=1,⋯,m
其中: K ( x i , x j ) = exp ( − ∥ x i − x j ∥ 2 2 σ 2 ) K\left( {{x_i},{x_j}} \right) = \exp \left( { - \frac{{{{\left\| {{x_i} - {x_j}} \right\|}^2}}}{{2{\sigma ^2}}}} \right) K(xi,xj)=exp(−2σ2∥xi−xj∥2)
非线性SVM有两个参数:正则化参数 C C C和核参数 σ \sigma σ。
import numpy as np
from sklearn import svm
from sklearn import cross_validation
from sklearn.model_selection import GridSearchCV
def load_data(data_file):
'''导入训练数据
input: data_file(string):训练数据所在文件
output: data(mat):训练样本的特征
label(mat):训练样本的标签
'''
data = []
label = []
f = open(data_file)
for line in f.readlines():
lines = line.strip().split(' ')
# 提取得出label
label.append(float(lines[0]))
# 提取出特征,并将其放入到矩阵中
index = 0
tmp = []
for i in range(1, len(lines)):
li = lines[i].strip().split(":")
if int(li[0]) - 1 == index:
tmp.append(float(li[1]))
else:
while(int(li[0]) - 1 > index):
tmp.append(0)
index += 1
tmp.append(float(li[1]))
index += 1
while len(tmp) < 13:
tmp.append(0)
data.append(tmp)
f.close()
return np.array(data), np.array(label).T
### 1.导入数据集
trainX,trainY = load_data('heart_scale')
### 2.设置C和sigma的取值范围
c_list = []
for i in range(1,50):
c_list.append(i * 0.5)
gamma_list = []
for j in range(1,40):
gamma_list.append(j * 0.2)
### 3.1循环嵌套实现网格搜索 + 交叉验证
best_value = 0.0
for i in c_list:
for j in gamma_list:
current_value = 0.0
rbf_svm = svm.SVC(kernel = 'rbf', C = i, gamma = j)
scores = cross_validation.cross_val_score(rbf_svm,trainX,trainY,cv =3,scoring = 'accuracy')
current_value = scores.mean()
if current_value >= best_value:
best_value = current_value
best_parameters = {'C': i, 'gamma': j}
print('Best Value is :%f'%best_value)
print('Best Parameters is',best_parameters)
import numpy as np
from sklearn import svm
from sklearn.model_selection import GridSearchCV
def load_data(data_file):
'''导入训练数据
input: data_file(string):训练数据所在文件
output: data(mat):训练样本的特征
label(mat):训练样本的标签
'''
data = []
label = []
f = open(data_file)
for line in f.readlines():
lines = line.strip().split(' ')
# 提取得出label
label.append(float(lines[0]))
# 提取出特征,并将其放入到矩阵中
index = 0
tmp = []
for i in range(1, len(lines)):
li = lines[i].strip().split(":")
if int(li[0]) - 1 == index:
tmp.append(float(li[1]))
else:
while(int(li[0]) - 1 > index):
tmp.append(0)
index += 1
tmp.append(float(li[1]))
index += 1
while len(tmp) < 13:
tmp.append(0)
data.append(tmp)
f.close()
return np.array(data), np.array(label).T
### 1.导入数据集
trainX,trainY = load_data('heart_scale')
### 2.设置C和sigma的取值范围
c_list = []
for i in range(1,50):
c_list.append(i * 0.5)
gamma_list = []
for j in range(1,40):
gamma_list.append(j * 0.2)
### 3.2 GridSearchCV(网格搜索+CV)
param_grid = {'C': c_list,
'gamma':gamma_list}
rbf_svm1 = svm.SVC(kernel = 'rbf')
grid = GridSearchCV(rbf_svm1, param_grid, cv=3, scoring='accuracy')
grid.fit(trainX,trainY)
best_parameter = grid.best_params_
print(best_parameter)
1.https://blog.csdn.net/google19890102/article/details/35989959