Python 纯手写 实现感知机模型及对偶形式

根据《统计学习方法》P29页算法2.1,实现感知机模型及对偶形式。

算法2.1:

输入:训练数据集,learning rate alpha。

输出:权重w,偏置b。

(1)初始化w0,b0

(2)在数据集中选定Xi,Yi带入

(3)计算Yi * (Xi * w + b),如果小于等于0,对w和b进行更新

(4)重复(2),(3),直至无误分类点。

Python代码如下:

import numpy as np
x = np.array([[3,3] , [4,3] , [1,1]])
y = np.array([1 , 1 , -1])
yita = 1

def traning(x,y,yita):
    w = np.zeros(len(x[0]))
    b = 0
    n = len(x)
    while True:
        j = 0
        for i in range(n):
            if y[i]*(np.dot(x[i],w) + b) <= 0:
                w += x[i] * y[i] * yita
                b += y[i] * yita
            else:
                j += 1
        if j == 3:
            return w , b

w1 , b1 = traning(x,y,yita)

print("Model:w = {}".format(w1))
print("Model:b = {}".format(b1))

 

 

算法2.2:

输入:训练数据集,learning rate alpha。

输出:a,偏置b。

(1)初始化w0,b0

(2)在数据集中选定Xi,Yi带入

(3)计算,如果小于等于0,对a和b进行更新

(4)重复(2),(3),直至无误分类点。

Python代码如下:

import numpy as np
x = np.array([[3,3] , [4,3] , [1,1]])
y = np.array([1 , 1 , -1])
yita = 1


def x_dot(a,i):
    sum_res = 0
    for xx in range(len(x)):
        sum_res += np.dot(x[xx],x[i]) * a[xx] * y[xx]
    return sum_res


def training(x,y,yita):
    n = len(x)
    a = np.zeros(n)
    b = 0

    while True:
        z = 0
        for i in range(n):
            if y[i] * (x_dot(a,i) + b) <= 0:
                a[i] += yita
                b += y[i] * yita
            else:
                z += 1
        if z == 3:
            return a , b


a1 , b1 = training(x,y,yita)

print("Model a1:{}".format(a1))
print("Model b1:{}".format(b1))

 

你可能感兴趣的:(机器学习)