上面Conv layers包含了五层卷积层。 接下来,对于第五层卷积层,进行了3*3的卷积操作,输出了256个通道,当然大小与卷积前的大小相同。
然后开始分别接入了cls层与regression层。对于cls层,使用1*1的卷积操作输出了18(9*2 bg/fg)个通道的feature map,大小不变。而对于regression层,也使用1*1的卷积层输出了36(4*9)个通道的feature map,大小不变。
对于cls层后又接了一个reshape层,为什么要接这个层呢?引用参考文献[1]的话,其实只是为了便于softmax分类,至于具体原因这就要从caffe的实现形式说起了。在caffe基本数据结构blob中以如下形式保存数据:
blob=[batch_size, channel,height,width]
对应至上面的保存bg/fg anchors的矩阵,其在caffe blob中的存储形式为[1, 2*9, H, W]。而在softmax分类时需要进行fg/bg二分类,所以reshape layer会将其变为[1, 2, 9*H, W]大小,即单独“腾空”出来一个维度以便softmax分类,之后再reshape回复原状。
我们可以用python模拟一下,看如下的程序:
>>> a=np.array([[[1,2],[3,4]],[[5,6],[7,8]],[[9,10],[11,12]],[[13,14],[15,16]]])
>>> a
array([[[ 1, 2],
[ 3, 4]],
[[ 5, 6],
[ 7, 8]],
[[ 9, 10],
[11, 12]],
[[13, 14],
[15, 16]]])
>>> a.shape
(4L, 2L, 2L)
然后由于caffe中是行优先,numpy也如此,那么reshape一下的结果如下:
>>> b=a.reshape(2,4,2)
>>> b
array([[[ 1, 2],
[ 3, 4],
[ 5, 6],
[ 7, 8]],
[[ 9, 10],
[11, 12],
[13, 14],
[15, 16]]])
假定softmax昨晚后,我们看看是否能够回到原先?
>>> b.reshape(4,2,2)
array([[[ 1, 2],
[ 3, 4]],
[[ 5, 6],
[ 7, 8]],
[[ 9, 10],
[11, 12]],
[[13, 14],
[15, 16]]])
果然又回到了原始的状态。
而对于regression呢,不需要这样的操作,那么他的36个通道是不是也是如上面18个通道那样呢?即第一个9通道为dx,第二个为dy,第三个为dw,第五个是dh。还是我们比较容易想到的那种,即第一个通道是第一个盒子的回归量(dx1,dy1,dw1,dh1),第二个为(dx2,dy2,dw,2,dh2).....。待后面查看对应的bbox_targets就知道了。先留个坑。
正如图上所示,我们还需要准备一个层rpn-data。
layer {
name: 'rpn-data'
type: 'Python'
bottom: 'rpn_cls_score'
bottom: 'gt_boxes'
bottom: 'im_info'
bottom: 'data'
top: 'rpn_labels'
top: 'rpn_bbox_targets'
top: 'rpn_bbox_inside_weights'
top: 'rpn_bbox_outside_weights'
python_param {
module: 'rpn.anchor_target_layer'
layer: 'AnchorTargetLayer'
param_str: "'feat_stride': 16"
}
}
data: 1*3*600*1000
gt_boxes: N*5, N为groundtruth box的个数,每一行为(x1, y1, x2, y2, cls) ,而且这里的gt_box是经过缩放的。
im_info: 1*3 (h,w,scale)
rpn_cls_score是cls层输出的18通道,shape可以看成是1*18*H*W.
输出为4个量:rpn_labels 、rpn_bbox_targets(回归目标)、rpn_bbox_inside_weights(内权重)、rpn_bbox_outside_weights(外权重)。
通俗地来讲,这一层产生了具体的anchor坐标,并与groundtruth box进行了重叠度计算,输出了kabel与回归目标。
接下来我们来看一下文件anchor_target_layer.py
def setup(self, bottom, top):
接下来看forward函数。
def forward(self, bottom, top):
# Algorithm:
#
# for each (H, W) location i
# generate 9 anchor boxes centered on cell i
# apply predicted bbox deltas at cell i to each of the 9 anchors
# filter out-of-image anchors
# measure GT overlap
assert bottom[0].data.shape[0] == 1, \
'Only single item batches are supported' # 仅仅支持一张图片
# map of shape (..., H, W)
height, width = bottom[0].data.shape[-2:]
# GT boxes (x1, y1, x2, y2, label)
gt_boxes = bottom[1].data
# im_info
im_info = bottom[2].data[0, :]
if DEBUG:
print ''
print 'im_size: ({}, {})'.format(im_info[0], im_info[1])
print 'scale: {}'.format(im_info[2])
print 'height, width: ({}, {})'.format(height, width)
print 'rpn: gt_boxes.shape', gt_boxes.shape
print 'rpn: gt_boxes', gt_boxes
# 1. Generate proposals from bbox deltas and shifted anchors
shift_x = np.arange(0, width) * self._feat_stride
shift_y = np.arange(0, height) * self._feat_stride
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shifts = np.vstack((shift_x.ravel(), shift_y.ravel(),
shift_x.ravel(), shift_y.ravel())).transpose()
# add A anchors (1, A, 4) to
# cell K shifts (K, 1, 4) to get
# shift anchors (K, A, 4)
# reshape to (K*A, 4) shifted anchors
A = self._num_anchors
K = shifts.shape[0]
all_anchors = (self._anchors.reshape((1, A, 4)) +
shifts.reshape((1, K, 4)).transpose((1, 0, 2)))
all_anchors = all_anchors.reshape((K * A, 4))
total_anchors = int(K * A) # 根据左上角的anchor生成所有的anchor,这里将所有的anchor按照行排列。行:K*A(K= height*width ,A=9),列:4,且按照feature map按行优先这样排下来。
# only keep anchors inside the image #取所有在图像内部的anchor
inds_inside = np.where(
(all_anchors[:, 0] >= -self._allowed_border) &
(all_anchors[:, 1] >= -self._allowed_border) &
(all_anchors[:, 2] < im_info[1] + self._allowed_border) & # width
(all_anchors[:, 3] < im_info[0] + self._allowed_border) # height
)[0]
if DEBUG:
print 'total_anchors', total_anchors
print 'inds_inside', len(inds_inside)
# keep only inside anchors
anchors = all_anchors[inds_inside, :]
if DEBUG:
print 'anchors.shape', anchors.shape
# label: 1 is positive, 0 is negative, -1 is dont care
labels = np.empty((len(inds_inside), ), dtype=np.float32)
labels.fill(-1)
# overlaps between the anchors and the gt boxes
# overlaps (ex, gt)
overlaps = bbox_overlaps(
np.ascontiguousarray(anchors, dtype=np.float),
np.ascontiguousarray(gt_boxes, dtype=np.float))
argmax_overlaps = overlaps.argmax(axis=1) #对于每一个anchor,取其重叠度最大的ground truth的序号
max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps] #生成max_overlaps,(为一列)即每个anchor对应的最大重叠度
gt_argmax_overlaps = overlaps.argmax(axis=0) #对于每个类,选择其对应的最大重叠度的anchor序号
gt_max_overlaps = overlaps[gt_argmax_overlaps,
np.arange(overlaps.shape[1])] #生成gt_max_overlaps,(为一行)即每类对应的最大重叠度
gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0] #找到那些等于gt_max_overlaps的anchor,这些anchor将参与训练rpn
# 找到所有overlaps中所有等于gt_max_overlaps的元素,因为gt_max_overlaps对于每个非负类别只保留一个
# anchor,如果同一列有多个相等的最大IOU overlap值,那么就需要把其他的几个值找到,并在后面将它们
# 的label设为1,即认为它们是object,毕竟在RPN的cls任务中,只要认为它是否是个object即可,即一个
# 二分类问题。 (总结)
# 如下设置了前景(1)、背景(0)以及不关心(-1)的anchor标签
if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:
# assign bg labels first so that positive labels can clobber them
labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0 #对于最大重叠度低于0.3的设为背景
# fg label: for each gt, anchor with highest overlap
labels[gt_argmax_overlaps] = 1
# fg label: above threshold IOU
labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1
if cfg.TRAIN.RPN_CLOBBER_POSITIVES:
# assign bg labels last so that negative labels can clobber positives
labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0
# 取前景与背景的anchor各一半,目前一批有256个anchor.
# subsample positive labels if we have too many
num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE) #256*0.5=128
fg_inds = np.where(labels == 1)[0]
if len(fg_inds) > num_fg:
disable_inds = npr.choice(
fg_inds, size=(len(fg_inds) - num_fg), replace=False)
labels[disable_inds] = -1
# subsample negative labels if we have too many
num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1) #另一半256*0.5=128
bg_inds = np.where(labels == 0)[0]
if len(bg_inds) > num_bg:
disable_inds = npr.choice(
bg_inds, size=(len(bg_inds) - num_bg), replace=False)
labels[disable_inds] = -1
#print "was %s inds, disabling %s, now %s inds" % (
#len(bg_inds), len(disable_inds), np.sum(labels == 0))
#计算了所有在内部的anchor与对应的ground truth的回归量
bbox_targets = np.zeros((len(inds_inside), 4), dtype=np.float32)
bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])
#只有前景类内部权重才非0,参与回归
bbox_inside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
bbox_inside_weights[labels == 1, :] = np.array(cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS) #(1.0, 1.0, 1.0, 1.0)
# Give the positive RPN examples weight of p * 1 / {num positives}
# and give negatives a weight of (1 - p)/(num negative)
# Set to -1.0 to use uniform example weighting
bbox_outside_weights = np.zeros((len(inds_inside), 4), dtype=np.float32)
if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0:
# uniform weighting of examples (given non-uniform sampling)
num_examples = np.sum(labels >= 0)
positive_weights = np.ones((1, 4)) * 1.0 / num_examples
negative_weights = np.ones((1, 4)) * 1.0 / num_examples
else:
assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
(cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))
positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT /
np.sum(labels == 1))
negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) /
np.sum(labels == 0))
bbox_outside_weights[labels == 1, :] = positive_weights # 前景与背景anchor的外参数相同,都是1/anchor个数
bbox_outside_weights[labels == 0, :] = negative_weights
if DEBUG:
self._sums += bbox_targets[labels == 1, :].sum(axis=0)
self._squared_sums += (bbox_targets[labels == 1, :] ** 2).sum(axis=0)
self._counts += np.sum(labels == 1)
means = self._sums / self._counts
stds = np.sqrt(self._squared_sums / self._counts - means ** 2)
print 'means:'
print means
print 'stdevs:'
print stds
# map up to original set of anchors 生成全部anchor的数据,将非0的数据填入。
labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0)
bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0)
if DEBUG:
print 'rpn: max max_overlap', np.max(max_overlaps)
print 'rpn: num_positive', np.sum(labels == 1)
print 'rpn: num_negative', np.sum(labels == 0)
self._fg_sum += np.sum(labels == 1)
self._bg_sum += np.sum(labels == 0)
self._count += 1
print 'rpn: num_positive avg', self._fg_sum / self._count
print 'rpn: num_negative avg', self._bg_sum / self._count
# labels
labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2)
labels = labels.reshape((1, 1, A * height, width))
top[0].reshape(*labels.shape)
top[0].data[...] = labels
# bbox_targets
bbox_targets = bbox_targets \
.reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2)
top[1].reshape(*bbox_targets.shape)
top[1].data[...] = bbox_targets
# bbox_inside_weights
bbox_inside_weights = bbox_inside_weights \
.reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2)
assert bbox_inside_weights.shape[2] == height
assert bbox_inside_weights.shape[3] == width
top[2].reshape(*bbox_inside_weights.shape)
top[2].data[...] = bbox_inside_weights
# bbox_outside_weights
bbox_outside_weights = bbox_outside_weights \
.reshape((1, height, width, A * 4)).transpose(0, 3, 1, 2)
assert bbox_outside_weights.shape[2] == height
assert bbox_outside_weights.shape[3] == width
top[3].reshape(*bbox_outside_weights.shape)
top[3].data[...] = bbox_outside_weights
首先这里生成了所有feature map各点对应的anchors。生成的方式很特别,先考虑了左上角一个点的anchor生成,考虑到feat_stride=16,所以这个点对应原始图像(这里统一指缩放后image)的(0,0,15,15)感受野。然后取其中心点,生成比例为1:1,1:2,2:1,尺度在128,256,512的9个anchor.然后考虑使用平移生成其他的anchor.
然后过滤掉那些不在图像内部的anchor. 对于剩下的anchor,计算与gt_boxes的重叠度,再分别计算label,bbox_targets,bbox_inside_weights,bbox_outside_weights.
最后将内部的anchor的相关变量扩充到所有的anchor,只不过不在内部的为0即可。尤其值得说的是对于内部的anchor,bbox_targets都进行了运算。但是选取了256个anchor,前景与背景比例为1:1,bbox_inside_weights中只有label=1,即前景才进行了设置。正如论文所说,对于回归项,需要内部参数来约束,bbox_inside_weights正好起到了这个作用。
我们统计一下top的shape:
rpn_labels : (1, 1, 9 * height, width)
rpn_bbox_targets(回归目标): (1, 36,height, width)
rpn_bbox_inside_weights(内权重):(1, 36,height, width)
rpn_bbox_outside_weights(外权重):(1, 36,height, width)
回到stage1_rpn_train.pt,接下里我们就可以利用rpn_cls_score_reshape与rpn_labels计算SoftmaxWithLoss,输出rpn_cls_loss。
而regression可以利用rpn_bbox_pred,rpn_bbox_targets,rpn_bbox_inside_weights,rpn_bbox_outside_weights计算SmoothL1Loss,输出rpn_loss_bbox。
回到我们之前有一个问题rpn_bbox_pred的shape怎么构造的。其实从rpn_bbox_targets的生成过程中可以推断出应该采用后一种,即第一个盒子的回归量(dx1,dy1,dw1,dh1),第二个为(dx2,dy2,dw,2,dh2).....,这样顺序着来。
其实怎么样认为都是从我们方便的角度出发。
至此我们完成了rpn的前向过程,反向过程中只需注意AnchorTargetLayer不参与反向传播。因为它提供的都是源数据。
参考:
1. http://blog.csdn.net/zy1034092330/article/details/62044941
2. Faster RCNN anchor_target_layer.py