画出使用分类器得到的决策边界

获取数据集,并画图代码如下:

import numpy as np
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
# 手动生成一个随机的平面点分布,并画出来
np.random.seed(0)
X, y = make_moons(200, noise=0.20)
plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)
plt.show()

得到图如下:

画出使用分类器得到的决策边界_第1张图片

定义决策边界函数:

# 咱们先顶一个一个函数来画决策边界
def plot_decision_boundary(pred_func):

    # 设定最大最小值,附加一点点边缘填充
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    h = 0.01

    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

    # 用预测函数预测一下
    Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)

    # 然后画出图
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
定义分类函数,并画出决策边界图代码如下:

from sklearn.linear_model import LogisticRegressionCV
#咱们先来瞄一眼逻辑斯特回归对于它的分类效果
clf = LogisticRegressionCV()
clf.fit(X, y)
 
# 画一下决策边界
plot_decision_boundary(lambda x: clf.predict(x))
plt.title("Logistic Regression")
plt.show()

画图如下:

画出使用分类器得到的决策边界_第2张图片



你可能感兴趣的:(机器学习)