- AI驱动的药物设计的优势表现在哪些方面
小宝哥Code
量化交易人工智能
AI驱动的药物设计(AI-DrivenDrugDesign)正在彻底改变传统药物研发的模式,其优势主要体现在以下几个方面:1.加速药物发现过程传统药物发现:通常需要10-15年,耗资数十亿美元。AI驱动药物发现:通过高通量筛选、虚拟药物设计和预测模型,大幅缩短研发周期。案例:Exscientia利用AI平台在12个月内设计出了一种抗癌药物候选分子,而传统方法通常需要4-5年。2.降低研发成本传统方
- 高效高并发调度架构
之群害马
架构
以下是从架构层面为你提供的适合多核CPU、多GPU环境下API客户端、服务端高级调度,以实现高效并发大规模与用户交互的技术栈:通信协议gRPC:基于HTTP/2协议,具有高性能、低延迟的特点,支持二进制序列化(通常搭配Protobuf),非常适合高并发场景。它提供了流式通信和多路复用功能,可有效减少网络开销。常用于微服务之间的通信,例如机器学习模型服务与前端应用之间的交互。RSocket:是一种基
- 英码科技基于昇腾算力实现DeepSeek离线部署
英码科技
科技
DeepSeek-R1模型以其创新架构和高效能技术迅速成为行业焦点。如果能够在边缘进行离线部署,不仅能发挥DeepSeek大模型的效果,还能确保数据处理的安全性和可控性。英码科技作为AI算力产品和AI应用解决方案服务商,积极响应市场需求,率先完成了昇腾系列产品与DeepSeek模型的深度适配。从硬件调校到软件优化,英码科技确保了昇腾系列产品的稳定、高效适配,为用户提供了更具竞争力的部署选择。Dee
- 【一文读懂】HTTP与Websocket协议
Bl_a_ck
通讯协议httpwebsocket网络协议
HTTP协议概述HTTP(HypertextTransferProtocol),即超文本传输协议,是一种用于在客户端和服务器之间传输超文本(例如网页、图片、音频、视频等)的通信协议。它是万维网(WWW)的基础,负责在浏览器(客户端)和web服务器之间交换信息。HTTP是一个应用层协议,位于OSI模型的第七层,通常通过TCP(传输控制协议)进行通信。HTTP是无状态的、面向请求/响应的协议,意思是每
- 95%人都不知道的,或许是最全DeepSeek 提示词合集、使用技巧与代码实现全攻略【建议收藏】
大F的智能小课
python开发语言人工智能算法
一、引言DeepSeek作为一款强大的AI大语言模型工具,凭借其高效、灵活的特点,受到了众多开发者和用户的青睐。本文将全面介绍DeepSeek的提示词合集、使用技巧以及代码实现方法,帮助读者更好地利用这一工具,提升工作效率和创造力。二、DeepSeek提示词合集(一)代码处理代码改写:优化代码,进行纠错、注释、调优等。示例:请对以下代码进行优化,提高运行效率:[代码片段]对代码进行修改,来实现纠错
- Anaconda3 介绍和安装
gorgor在码农
#python入门基础pythonconda
介绍Anaconda是一个开源的Python和R语言发行版,专注于数据科学、机器学习和科学计算,主要面向数据科学和机器学习领域。它集成了大量常用的科学计算库(如NumPy、Pandas、Matplotlib、Scikit-learn等),并提供了强大的包管理工具Conda和环境管理功能,适合快速部署和管理复杂的开发环境。特点:预装丰富库:包含250+常用的数据科学工具包,无需手动安装。跨平台支持:
- 【vLLM 学习】安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM是一个Python库,包含预编译的C++和CUDA(12.1)二进制文件。依赖环境操作系统:LinuxPython:3.8-3.12GPU:计算能力7.0或更高(例如V100、T4、RTX20xx、A100、L
- 揭秘DeepSeek代码改写提示词:从低效代码到工业级优化的AI魔法
老六哥_AI助理指南
DeepSeek人工智能DeepSeek
揭秘DeepSeek代码改写提示词:从低效代码到工业级优化的AI魔法引言:代码改写——AI时代的"编程外科手术"在软件工程领域,代码改写(CodeRefactoring)既是基本功也是高阶技能。传统开发中,开发者需要同时兼顾功能实现、性能优化、边界条件处理等多维目标,而DeepSeek的代码改写提示词技术,通过其独特的模型架构与提示词工程,正在重构这一过程的底层逻辑。本文将从技术原理、实践方法论、
- 基于 LLM 的智能运维 Agent 系统设计与实现
LLM教程
人工智能embeddingLLMpython大模型Agent智能体
摘要本文详细介绍了一个基于大语言模型(LLM)的智能运维Agent系统的设计与实现。该系统采用多Agent协同的架构,通过事件驱动的方式实现了自动化运维流程。系统集成了先进的AI能力,能够实现故障自动诊断、预测性维护、知识沉淀等核心功能。一、运维Agent架构设计在设计智能运维Agent系统时,我们采用了模块化和事件驱动的架构思想,将复杂的运维场景分解为多个独立的能力域,并通过消息总线实现各组件的
- python后端调用Deep Seek API
YY_oot
pythonai语言模型
python后端调用DeepSeekAPI需要依次下载●Ollama●DeepseekR1LLM模型●嵌入模型nomic-embed-text/bge-m3●AnythingLLM参考教程:DeepseekR1打造本地化RAG知识库:安装部署使用详细教程手把手教你:deepseekR1基于AnythingLLMAPI调用本地知识库python调用anythingllm的APIimportreque
- 【机器学习】无监督学习算法之:K均值聚类
Carl_奕然
机器学习算法学习
K均值聚类1、引言2、K均值聚类2.1定义2.2原理2.3实现方式2.4算法公式2.4.1距离计算公式2.4.1中心点计算公式2.5代码示例3、总结1、引言小屌丝:鱼哥,K均值聚类我不懂,能不能给我讲一讲?小鱼:行,可以小屌丝:额…今天咋直接就答应了?小鱼:不然呢?小屌丝:有啥条件,直接说,小鱼:没有小屌丝:这咋的了,不提条件,我可不踏实小鱼:你看看你,我不提条件,你还不踏实,那你这是非让我提条件
- JVM内存模型与Java线程内存模型的区别
我心向阳iu
面试-场景应用题#JVM#Java多线程jvmjava开发语言
文章目录JVM内存模型与Java线程内存模型的区别JVM内存模型1.程序计数器(ProgramCounterRegister)2.Java虚拟机栈(JavaVirtualMachineStacks)3.本地方法栈(NativeMethodStack)4.Java堆(JavaHeap)5.方法区(MethodArea)6.运行时常量池(RuntimeConstantPool)7.直接内存(Direc
- .Net 7 新编译器 ILC 简析
dotNET跨平台
.net
楔子:这个新编译器的全称是ILCompiler。是之前CoreRT项目合并过来的,在.Net7成熟,并且可以产业化应用。本质:ILC编译器的本质除了构建CLR的所拥有的主要功能,还包含了对LLVM这种意图取代GCC编译器的操作,对于LLVM主要是用来Win,Linux,Macos三种不同的操作系统的目标文件而所做的封装。一.CLR的主要功能:1.构建内存模型,比如MethodTable,EECla
- 【AI论文】随机鹦鹉在大型语言模型(LLM)之肩:物理概念理解的总结性评估
东临碣石82
人工智能语言模型自然语言处理
摘要:我们以系统的方式探讨了一个被广泛提及的问题:大型语言模型(LLM)真的理解它们所说的话吗?这与人们更为熟悉的术语“随机鹦鹉”息息相关。为此,我们提出了一项总结性评估,针对一项精心设计的物理概念理解任务——PhysiCo。我们的任务通过使用网格格式的输入来抽象描述物理现象,从而缓解了记忆问题。这些网格代表了不同层次的理解,从核心现象、应用实例到网格世界中其他抽象模式的类比。对我们任务的全面研究
- JVM内存区域以及内存分配策略
NPU_Li Meng
JVMJVMJava中的内存区域
一、运行时的数据区域程序计数器程序计数器(ProgramCounterRegister)是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器。每个线程都有一个独立的程序计数器,彼此间计数器互不影响,独立存储,即是“线程私有”的内存。在虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、跳转、循坏、异常处理、线程恢复等基础功能都需要依
- LLaMA3大模型技术全网最全解析——模型架构与训练方法(收录于GPT-4/ChatGPT技术与产业分析)
chenweiPhD
人工智能深度学习语言模型架构
Meta在周四(4月18日)发布了其最新大型语言模型LLaMA3。该模型将被集成到其虚拟助手MetaAI中。Meta自称8B和70B的LLaMA3是当今8B和70B参数规模的最佳模型,并在推理、代码生成和指令跟踪方面有了很大进步。(点赞是我们分享的动力)--------------------------------------------------主编作者陈巍博士,高级职称,曾担任华为系相关自
- 第二章:13.1 机器学习的迭代发展
望云山190
机器学习人工智能
目录机器学习模型开发流程构建电子邮件垃圾邮件分类器示例总结垃圾邮件分类示例构建垃圾邮件分类器机器学习模型开发流程确定系统架构:首先,需要决定机器学习系统的总体架构,这包括选择合适的模型、确定使用的数据集、可能还包括选择超参数等。实现和训练模型:根据上述决定,实现并训练一个模型。通常,第一次训练的模型不会立即达到预期的效果。诊断和调整:对模型进行诊断,查看算法的偏差、方差或进行错误分析。根据诊断结果
- 深度学习(1)-简单神经网络示例
yyc_audio
深度学习人工智能
我们来看一个神经网络的具体实例:使用Python的Keras库来学习手写数字分类。在这个例子中,我们要解决的问题是,将手写数字的灰度图像(28像素×28像素)划分到10个类别中(从0到9)。我们将使用MNIST数据集,图2-1给出了MNIST数据集的一些样本。在机器学习中,分类问题中的某个类别叫作类(class),数据点叫作样本(sample),与某个样本对应的类叫作标签(label)。你不需要现
- DeepSeek 如何获取数据库中的表信息(表名和字段名称)
Python测试之道
数据库python
问题背景在测试或开发过程中,了解数据库的表结构(包括表名和字段名称)是非常重要的一环,尤其是当我们需要测试数据库相关的功能或验证数据时。然而,手动查看数据库结构可能耗时且容易出错。如果能够通过DeepSeek与数据库直接交互,自动获取表名和字段信息,将大大提升测试效率。本文将介绍如何利用DeepSeek模型结合数据库查询,自动生成表结构信息(包括表名和字段名称)。此外,还会展示如何通过自然语言描述
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 私有AI对话系统实战:基于Ollama+OpenWebUI的DeepSeek-R1本地化部署手把手教学(可共享访问)
Developer-YC
DeekSeek-R1大模型解读与实战教学人工智能pythonjavagithubnode.js语言模型后端
引言:为什么选择本地部署大模型?在数据隐私日益重要的今天,云端AI服务的局限性逐渐显现——敏感信息泄露风险、网络延迟依赖、定制化能力不足。而通过**Ollama(模型管理框架)和OpenWebUI(可视化交互工具)**的组合,开发者可以轻松实现大模型(如DeepSeek-R1)的本地部署,兼顾性能与安全。本文将以DeepSeek-R1为例,详解从环境配置到实战应用的全流程。一、工具与模型简介1.O
- Python爬虫——网站基本信息
IT·小灰灰
python爬虫开发语言网络
在智能时代,数据是新的石油。Python爬虫技术赋予了我们成为数据猎人的能力,让我们能够在网络的广袤土地上狩猎,为机器学习和人工智能的发展提供燃料目录一、介绍——Python二、介绍——Python爬虫1.请求库2.解析库3.数据存储4.多线程/多进程5.异步编程6.代理和反爬虫7.爬虫框架8.爬虫的法律和道德问题9.异常处理10.日志记录三、爬虫示例代码一、介绍——PythonPython是一种
- deepseek本地部署指南(解决下载速度慢)
灶龙
人工智能deepseek人工智能本地部署
很多人都照着网上的教程去下载,但是网上的下载Ollama模型都下载不了,所以我打算写一篇不同的deepseek本地部署指南。第一步:下载奇游加速器奇游加速器下载网址下载奇游加速器后进行安装,然后搜索Deepseek点击进去,不要着急充值,点击右上角口令,输入奇游111就可以白嫖三天的有效期。第二步:下载Ollama框架点进Deepseek后,先点击一键加速(中途不要关闭),在点击右边的游戏服务中的
- 理论一、大模型—概念
伯牙碎琴
大模型自然语言处理ai
一、总述大模型通常指的是参数规模庞大、训练难度较高的人工智能模型。随着深度学习技术的发展,研究人员和企业越来越倾向于构建更大的模型,以提高模型的性能和泛化能力。这些大模型往往需要大量的数据和计算资源来训练,并且在实际应用中通常表现出色。大模型全称是大型语言模型(LLM,LargeLanguageModel),这个“大”主要指模型结构容量大,结构中的参数多,用于预训练大模型的数据量大。一个大模型可以
- 一、大模型微调的前沿技术与应用
伯牙碎琴
大模型微调人工智能大模型微调Deepseek
大模型微调的前沿技术与应用随着大规模预训练模型(如GPT、BERT、T5等)的广泛应用,大模型微调(Fine-Tuning,FT)成为了提升模型在特定任务中性能的关键技术。通过微调,开发者可以根据实际需求调整预训练模型的参数,使其更好地适应特定应用场景。本文将介绍大模型微调技术的前沿发展,分析不同微调方法的特点、适用场景以及优缺点,并对它们进行系统分类。微调技术的重要性大模型微调能够帮助开发者根据
- Python:第三方库
衍生星球
python第三方库
1.第三方Python库库名用途pip安装指令NumPy矩阵运算pipinstallnumpyMatplotlib产品级2D图形绘制pipinstallmatplotlibPIL图像处理pipinstallpillowsklearn机器学习和数据挖掘pipinstallsklearnRequestsHTTP协议访问pipinstallrequestsJieba中文分词pipinstalljieba
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- 领域驱动设计(DDD)是什么?——从理论到实践的全方位解析
小胡说技书
Java+SSM+DBjava领域驱动设计(DDD)架构领域模型微服务
文章目录一、引言二、核心概念与定位2.1DDD定义与核心理念2.2DDD关键元素三、底层原理与技术细节3.1领域模型与普适语言3.1.1领域模型3.1.2普适语言(UbiquitousLanguage)3.2战术设计模式详解3.2.1实体、值对象、聚合与领域服务3.2.2无状态函数在领域服务中的应用3.2.3工厂与仓储模式3.3战略设计:限界上下文与防腐层3.3.1限界上下文(BoundedCon
- 揭秘DeepSeek内幕:清华教授剖析AI模型技术原理
大模型.
人工智能chatgpt安全agigpt大模型deepseek
从ChatGPT到各种新兴的AI模型,每一次技术突破都能引发广泛的关注和讨论——而最近AI界的“新宠”,无疑是DeepSeek。在本文中,清华大学长聘副教授将深入剖析DeepSeekR1背后的大规模强化学习技术及其基本原理,并进一步展望大模型技术未来的发展方向。1、透过DeepSeekR1,看大模型技术的发展趋势今天我将从宏观角度为大家介绍DeepSeekR1所代表的大规模强化学习技术,及其基本原
- 【科普】大模型应用中一个 Token 占多少汉字?答案超乎想象!
大模型.
easyui前端人工智能程序人生语言模型文心一言自然语言处理
先说答案:不同模型可能采用各自的切分方法,因此,一个Token所对应的汉字数量也会有所不同。如腾讯1token≈1.8个汉字,通义千问、千帆大模型等1token=1个汉字,对于英文文本来说,1个token通常对应3至4个字母,不同的模型对相同的输入分词,分词结果是不一样的。同样可以说,一个汉字占约0.5个Token。Token是大模型中最基础、最常见的概念,它既可以是一个完整的单词,也可以是一个
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag