- Python实现简单的机器学习算法
master_chenchengg
pythonpython办公效率python开发IT
Python实现简单的机器学习算法开篇:初探机器学习的奇妙之旅搭建环境:一切从安装开始必备工具箱第一步:安装Anaconda和JupyterNotebook小贴士:如何配置Python环境变量算法初体验:从零开始的Python机器学习线性回归:让数据说话数据准备:从哪里找数据编码实战:Python实现线性回归模型评估:如何判断模型好坏逻辑回归:从分类开始理论入门:什么是逻辑回归代码实现:使用skl
- Python前沿技术:机器学习与人工智能
4.0啊
Python人工智能python机器学习
Python前沿技术:机器学习与人工智能一、引言随着科技的飞速发展,机器学习和人工智能(AI)已经成为了计算机科学领域的热门话题。Python作为一门易学易用且功能强大的编程语言,已经成为了这两个领域的首选语言之一。本文将深入探讨Python在机器学习和人工智能领域的应用,以及一些前沿技术和工具。二、Python机器学习基础2.1机器学习概述机器学习是人工智能(AI)的一个关键子集,它的核心在于让
- Python自动化办公2.0 即将发布
百里图书
自动化人工智能python
第一节课:数据整理与清洗第二节课:数据筛选、过滤与排序第三节课:高级数据处理技巧第四节课:数据可视化与实践案例第五节课:统计分析与报表第六节:常见的Excel报表与下方的课程形成知识体系:Python自动化办公(面向2020,Python3.7,不断更新ing)_在线视频教程-CSDN程序员研修院https://edu.csdn.net/course/detail/28031Python机器学习教
- 【Python机器学习】循环神经网络(RNN)——传递数据并训练
zhangbin_237
Python机器学习机器学习pythonrnn人工智能开发语言深度学习神经网络
与其他Keras模型一样,我们需要向.fit()方法传递数据,并告诉它我们希望训练多少个训练周期(epoch):model.fit(X_train,y_train,batch_size=batch_size,epochs=epochs,validation_data=(X_test,y_test))因为个人小电脑内存不足,所以吧maxlen参数改成了100重新运行。保存模型:model_struc
- 【Python机器学习】循环神经网络(RNN)——对RNN进行预测
zhangbin_237
Python机器学习机器学习pythonrnn深度学习人工智能自然语言处理
目录有状态性双向RNN编码向量如果有一个经过训练的模型,接下来就可以对其进行预测:sample_1="""Ihatethatthedismalweatherhadmedownforsolong,whenwillitbreak!Ugh,whendoeshappinessreturn?Thesunisblindingandthepuffycloudsaretoothin.Ican'twaitforth
- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 【Python机器学习】机器学习任务中常见的数据异质问题和模型异构问题是什么?解决策略是什么?
惊鸿若梦一书生
Python机器学习python深度学习开发语言
文章目录数据异质模型异构数据异质数据异质问题(Heterogeneityindata)通常指数据集内部的不一致性,这些不一致性可能来自多种源。在实际应用中,数据异质性可以表现为多种形式,包括:不同来源的数据:数据可能来自不同的数据源,每个源可能采用不同的数据收集方法和标准。例如,社交媒体数据和传统调查数据就可能有很大的差异。不同类型的数据:数据可以是结构化的(例如,数据库中的表格数据),半结构化的
- 【Python机器学习】卷积神经网络(CNN)的工具包
zhangbin_237
Python机器学习机器学习pythoncnn神经网络自然语言处理开发语言
Python是神经网络工具包最丰富的语言之一。两个主要的神经网络架构分别是Theano和TensorFlow。这两者的底层计算深度依赖C语言,不过它们都提供了强大的PythonAPI。Torch在Python里面也有一个对应的API是PyTorch。这些框架都是高度抽象的工具集,适用于从头构建模型。Python社区开发了一些第三方库来简化这些底层架构的使用。其中Keras在API的友好性和功能性方
- 【Python机器学习】卷积神经网络(CNN)
zhangbin_237
Python机器学习机器学习pythoncnn开发语言自然语言处理
卷积神经网络(CNN)得名于在数据样本上用滑动窗口(或卷积)的概念。卷积在数学中应用很广泛,通常与时间序列数据相关。它是用一个可视化盒子在一个区域内滑动,如下图所示:构建块卷积神经网络最早出现在图像处理和图像识别领域,它能够捕捉每个样本中数据点之间的空间关系,也就能识别出图像中是猫还是狗。卷积网络,也称为convnet,不像传统的前馈网络那样对每个元素(图中的像素)分配权重,而是定义了一组在图像上
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- 【Rust】——采用发布配置自定义构建
Y小夜
Rust(官方文档重点总结)rust开发语言后端
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,Python机器学习等主页链接:Y小夜-CSDN博客今日学习推荐:在当今这个飞速发展的信息时代,人工智能(AI)已经成为了一个不可或
- 【Rust】——高级类型
Y小夜
Rust(官方文档重点总结)rust开发语言后端
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,Python机器学习等主页链接:Y小夜-CSDN博客目录为了类型安全和抽象而使用的newtype模式类型别名用来创建类型同义词不返回
- 【Python机器学习】NLP词频背后的含义——隐性语义分析
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能开发语言
隐性语义分析基于最古老和最常用的降维技术——奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。SVD的一个应用是求逆矩阵。一个矩阵可以分解成3个最简单的方阵,然后对这些方阵求转置后再把它们相乘,就得到了原始矩阵的逆矩阵。它为我们提供了一个对大型复杂矩阵求逆的捷径。SVD适用于桁架结构的应力和应变分析等机械工程问题,它对电气工程中的电路分析也很有用,它甚至在数据科学中被用于基
- 【Python机器学习】NLP分词——利用分词器构建词汇表(三)——度量词袋之间的重合度
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python开发语言
如果能够度量两个向量词袋之间的重合度,就可以很好地估计他们所用词的相似程度,而这也是它们语义上重合度的一个很好的估计。因此,下面用点积来估计一些新句子和原始的Jefferson句子之间的词袋向量重合度:importpandasaspdsentence="""ThomasJeffersonBeganbulidingMonticelliastheageof26.\n"""sentence=senten
- 【Python机器学习】NLP概述——深度处理
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能机器人
自然语言处理流水线的各个阶段可以看作是层,就像是前馈神经网络中的层一样。深度学习就是通过在传统的两层机器学习模型架构(特征提取+建模)中添加额外的处理层来创建更复杂的模型和行为。上图中,前四层对应于聊天机器人流水线中的前两个阶段(特征提取和特征分析)。例如,词性标注(POS标注)是在聊天机器人流水线的分析阶段生成特征的一种方法。POS标签由默认的SpaCY流水线自动生成,该流水线包括上图中所有的前
- 【Python机器学习】NLP分词——词干还原的挑战
zhangbin_237
Python机器学习自然语言处理人工智能机器学习python开发语言
要想使用自然语言处理的相关应用,第一件事就是需要一个强大的词汇表。我们要把文档或任何字符串拆分为离散的有意义的词条,这里说的词条仅限于词、标点符号和数值,但是这里使用的技术可以很容易推广到字符序列包含的任何其他有意义的单元,比如ASCII表情符号、Unicode表情符号和数学符号。从文档中检索词条需要一些字符串处理方法,这些方法不仅仅是str.split(),处理时需要把标点符号与词分开,还需要将
- 【Python机器学习】NLP概述——自然语言智商
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python机器人
就像人类的智能一样,如果不考虑多个智能维度,单凭一个智商分数是无法轻易衡量NLP流水线的能力的。衡量机器人系统能力的一种常见方法是:根据系统行为的复杂性和所需的人类监督成都这两个维度来衡量。但是对自然语言处理流水线而言,其目标是建立一个完全自动化的自然语言处理系统,会消除所有的人工监督(一旦模型被训练和部署)。因此,一对更好的IQ维度应该能捕捉到自然语言流水线复杂的广度和深度。像Alexa或All
- 【Python机器学习】NLP概述——聊天机器人的自然语言流水线
zhangbin_237
Python机器学习自然语言处理机器人人工智能python机器学习
构建对话引擎或者聊天机器人所需的NLP流水线类似于某些问答系统。聊天机器人需要4个处理阶段和一个数据库来维护过去语句和回复的记录。这4个处理阶段中的每个阶段都可以包含一个或多个并行或串行工作的处理算法。如下图所示:1、解析:从自然语言文本中提取特征、结构化数值数;2、分析:通过对文本的情感、语法合法度及语义打分,生成和组合特征;3、生成:使用模板、搜索或语言模型生成可能的回复;4、执行:根据对话历
- 《Python机器学习项目实战》书籍介绍
袁袁袁袁满
python机器学习开发语言
文章目录书籍介绍主要内容书籍目录书籍介绍《Python机器学习项目实战》带领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。《Python机器学习项目实战》完全满足这三点!《Python机器学习项目实战》展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关
- 【Python机器学习】NLP的部分实际应用
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python大数据
自然语言处理在现实中非常多的应用,下表是其中的一些例子:应用示例1示例2示例3搜索web文档自动补全编辑拼写语法风格对话聊天机器人助手行程安排写作索引用语索引目录电子邮件垃圾邮件过滤分类优先级排序文本挖掘摘要知识提取医学诊断法律法律断案先例搜索传票分类新闻事件检索真相核查标题排字归属剽窃检测文字取证风格指导情感分析团队士气监控产品评论分类客户关怀行为预测金融选举预测营销创作电影脚本诗歌歌词如果在索
- python清华大学出版社答案_Python机器学习及实践
weixin_39805119
python清华大学出版社答案
第1章机器学习的基础知识1.1何谓机器学习1.1.1传感器和海量数据1.1.2机器学习的重要性1.1.3机器学习的表现1.1.4机器学习的主要任务1.1.5选择合适的算法1.1.6机器学习程序的步骤1.2综合分类1.3推荐系统和深度学习1.3.1推荐系统1.3.2深度学习1.4何为Python1.4.1使用Python软件的由来1.4.2为什么使用Python1.4.3Python设计定位1.4.
- Python机器学习笔记:CART算法实战
战争热诚
完整代码及其数据,请移步小编的GitHub传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言在python机器学习笔记:深入学习决策树算法原理一文中我们提到了决策树里的ID3算法,C4.5算法,并且大概的了
- python机器学习库Scikit-learn
崔吉龙
python语言中用来处理机器学习的库最重要的就是Scikit-learn,简称sklearn。被大多数科学家所钟爱,包括了构建良好的学习算法、误差函数和测试例程。在sklearn的核心有四种类型的类覆盖了所有机器学习功能:分类回归聚类分组转换数据虽然sklearn提供的算法比较多,但是他们都符合基本的接口定义,为了是使用不同的算法时,所使用的接口时统一的。sklearn提供了四个基本对象接口。评
- optuna,一个好用的Python机器学习自动化超参数优化库
牵着猫散步的鼠鼠
python开发语言
️个人主页:鼠鼠我捏,要死了捏的主页️付费专栏:Python专栏️个人学习笔记,若有缺误,欢迎评论区指正前言超参数优化是机器学习中的重要问题,它涉及在训练模型时选择最优的超参数组合,以提高模型的性能和泛化能力。Optuna是一个用于自动化超参数优化的库,它提供了有效的参数搜索算法和方便的结果可视化工具。目录前言
- 【机器学习笔记】 6 机器学习库Scikit-learn
RIKI_1
机器学习机器学习笔记scikit-learn
Scikit-learn概述Scikit-learn是基于NumPy、SciPy和Matplotlib的开源Python机器学习包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数据分析师首选的机器学习工具包。自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学习算法。
- Python机器学习:Scikit-learn库与应用
数据小爬虫
api电商api机器学习pythonscikit-learn开发语言运维服务器
当涉及到Python机器学习时,Scikit-learn是一个非常流行且功能强大的库。它提供了广泛的算法和工具,使得机器学习变得简单而高效。下面是一个简单的Scikit-learn库与应用示例,其中包括代码。首先,确保你已经安装了Scikit-learn库。你可以使用pip命令来安装它:bash复制代码pipinstallscikit-learn接下来,我们将使用Scikit-learn来执行一个
- 见世面的成本有多低?这几个技术公众号告诉你答案
傅一平
独乐乐,不如众乐乐,为您精选以下公众号!人工智能爱好者社区专注人工智能、机器学习、数据科学等顶尖技术前沿科技成果研究、实战技巧。每周会有书豪采访记系列采访技术大佬文章和原创漫画文章,立即关注,掌握人工智能最新资讯与成果。号主是《R数据科学实战:工具详解与案例分析》书籍作者。大数据分析挖掘和Python机器学习商业智能BI、数据分析、数据挖掘、大数据、Python、机器学习、深度学习、算法等技术分享
- 如何安装Pytorch,CPU版本和GPU版本的安装流程。
JayGboy
pytorch人工智能python
1.PyTorch简介:PyTorch是一个开源的Python机器学习框架,专注于深度学习任务。它由Facebook的人工智能研究团队开发并维护,提供了丰富的工具和库,用于构建和训练各种深度神经网络模型。PyTorch使用动态计算图的概念,允许用户在运行时动态地定义、修改和调试计算图。这种灵活性使得模型构建和调试更加直观和方便,同时也支持更复杂的模型结构和控制流程。PyTorch采用Pythoni
- Python机器学习之交叉验证
一只怂货小脑斧
交叉验证是一种非常常用的对于模型泛化能力进行评估方法,交叉验证既可以解决数据集的数据量不够大问题,也可以解决参数调优的问题。常用的交叉验证方法有:简单交叉验证(HoldOut检验,例如train_test_split)、k折交叉验证(例如KFold)、自助法kfold是将数据集划分为K-折,只是划分数据集;cross_val_score是根据模型进行计算,计算交叉验证的结果,你可以简单认为就是cr
- 浏览器F12调试
知行合一。。。
测试技术功能测试
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录1浏览器F12开发者工具1.1F12开发者工具基本介绍1.2F12常规设置2标签页2.1Elements查看器2.2Network网络2.3Network抓包分析案例1:以登录百度账号
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag