感知器——python实现

import numpy as np;
import matplotlib  
import matplotlib.pyplot as plt

X = np.mat([[1.24,1.27],[1.36,1.74],[1.38,1.64],[1.38,1.82],[1.38,1.90],[1.40,1.70],[1.48,1.82],[1.54,1.82],
            [1.56,2.08],[1.14,1.82],[1.18,1.96],[1.20,1.86],[1.26,2.00],[1.28,2.00],[1.30,1.96]]);

#plt.plot(X[:,0],X[:,1],'o')# use pylab to plot x and y
#pl.xlim(0.0, 2.0)# set axis limits
#pl.ylim(0.0, 2.0)
#plt.show()# show the plot on the screen


def perce(X,y,rho,w_ini):
    N,C = X.shape                  # 训练样本集的大小
    max_iter = 10000               # 最大允许的迭代次数               
    w = w_ini                      # 初始化的参数向量,比如 w_ini=[0;0];
    iter = 0                       # 迭代计数器,初置为0
    mis_clas=N                     # 分类错误数,可初置为N

    while (mis_clas>0 and iter 0:
        plt.plot(X[i,0],X[i,1],'ro')# use pylab to plot x and y
    else:
        plt.plot(X[i,0],X[i,1],'bo')# use pylab to plot x and y

plt.show()# show the plot on the screen


感知器错误分类率=0.000000	当rho=0.050000

[[ 0.1565 ]
 [-0.10955]]



你可能感兴趣的:(python)