- python logistic regression_机器学习算法与Python实践之逻辑回归(Logistic Regression)
weixin_39702649
pythonlogisticregression
机器学习算法与Python实践这个系列主要是参考下载地址:https://bbs.pinggu.org/thread-2256090-1-1.html一、逻辑回归(LogisticRegression)Logisticregression(逻辑回归)是当前业界比较常用的机器学习方法,用于估计某种事物的可能性。之前在经典之作《数学之美》中也看到了它用于广告预测,也就是根据某广告被用户点击的可能性,把
- 2023-07-28
2023梦启支教团张耀文
感悟数学之美,分享数独之乐——中国矿业大学梦启支教团开展趣味数独课程7月27日下午3时,中国矿业大学梦启支教团在贵州省金沙县第九小学(金沙县彩虹小学)开展“兴趣爱好培养班”系列课程,本次课程讲述趣味数独。该课程旨在让学生们教会孩子们数独的技巧方法,引导学生喜欢数独、爱上数独。课程由梦启支教团成员于子文主讲,梦启三班全员参加。课程伊始,于子文老师首先介绍欧拉研究的拉丁方阵,向学生们讲述数独的起源,激
- 数学之美(43)——由勾股定理与相似进入玄幻的图形转换世界
刷牙喝凉白开
今天,我们直接进入正题,如果给一个三角形,怎么作出与它面积相等的正方形?有的小伙伴就很吃惊,这还不简单吗?求出三角形的面积S△,再求得S△的算术平方根,不就是正方形的边长了吗?可问题是:如果三角形的性质是任意的,三边长度未知,无法通过测量的方法来求得面积,而且作图只能用尺规呢?其实,这类问题我们借助勾股定理及相似里的射影定理就可以圆满解决。基础概念.1勾股定理直角三角形斜边的平方等于两直角边的平方
- 万物皆数
学生的陪伴者
爱因斯坦说过,宇宙最不可理解之处,就是它居然是可以被理解的。本书将告诉你,那些看似不可理解的万物背后,隐藏着一把开启理解之门的钥匙。这把钥匙,就是数学!本书将引领我们穿越回史前时代、四大文明古国、欧洲中世纪与文艺复兴时期,也会带领我们漫步于巴黎卢浮宫与发现宫。作者巧妙地运用历史学的方法,构建了无数历史或现今的场景,将数学从亭台楼阁之上带入我们的日常生活,将数学之美化为一篇篇优美的文字,娓娓道来。阅
- 书单
boo_
已完成:2020年5月《微服务设计》(5.2)《redis开发与运维》(5.4)2019年《我们台湾这些年》《GoWeb编程》(12.14)《Go高级编程》(1.4)《Go语言实战》《MySQL入门很简单》《MySQL必知必会》《编码:隐匿在计算机软硬件背后的语言》《程序员修炼之道-从小工到专家》《树莓派开始,玩转Linux》《数学之美》·吴军《浪潮之巅》·吴军阅读中《Go程序设计语言》(2.3.
- 马云云栖大会演讲
猎豹最快
有很多东西想讲,但是被数学家们这么一搞(前几分钟,数学家门登台展示数学之美),我心里发虚,就不一定讲得下去。昨天晚上和数学家们进行了交流。我非常后悔没有进入数学世界,当然也很幸运没进入那个世界,因为我进去很有可能被赶出来。毫无疑问,没有数学为基础,科学就可能没有基础,没有科学就没有这些技术。默默无闻在背后为人类社会作出巨大贡献的人才是真正的英雄。云栖大会已经第九届,应该是第十年的第九届。参加人数是
- 打起精神去天马行空吧~!~
零月浅浅
自从决定参加注册电气工程师的考试,浅浅终于迈上文理艺兼修的终极道路,这时候为了给自己洗脑“数学之美”、“科学之美”和多元思维,我特意买来《达芬奇传》《穷查理宝典》和《爱因斯坦传》书房镇宅,还放言如果明年能过就买一本《几何原本》作为客厅镇宅之宝,毕竟洗脑其实就是通过反复循环来构建神经回路,晚洗不如早洗,别人洗不如自己洗,应付考试洗不如赋予伟大意义洗,对吧~!在这个过程中有几点心得体会,我觉得可以跟朋
- 1.25商学院-工具书籍
城市格调刘姣
对我印象深刻的是第三本《数学之美》,前几天我在研究数据做表格,什么公式、求和、函数等等的都是关于数学方面的,现在才觉得原来上学时语数外都是到长大了到了一定层次才能用到的东西,小时候没学好的,现在又要补课了。
- 工具书籍
w小郭
本课中着重讲到了数学之美。都说上帝本就是程序员,这说明世间万事万物都有其自己的既有规律,而程序使用的基本工具就是数学。平时在管理过程中,任何举措无不是建立在数学知识之上的。所有重大决策都是以数据分析作为依据,所有机制均是以数据作为平台支持的。管理中如果没有数据,就不是更改的抉择。如果一个管理机制不是建立在数据基础上的,只凭借感性而为,则很难持久或精确。
- 分享|熵增定律:让无数迷途者顿悟的终极定律
西西弗斯推石头_一念及春
如果物理学只能留一条定律,我会留熵增定律。说这句话的人叫吴国盛,清华大学的科学史系主任。另外一位吴姓牛人,毕业于清华大学及约翰霍普金斯大学,写了《浪潮之巅》《数学之美》等十多本畅销书的跨界达人吴军,也说过类似的话,他说如果地球毁灭了,我们怎么能够在一张名片上写下地球文明的全部精髓,让其它文明知道我们曾有过这个文明呢?吴博士给出的答案是三个公式:1+1=2(代表了数学文明)E=mc²(爱因斯坦的质能
- 数学之美,无与伦比
過期作廢
Day144廢銅爛鐵听《万物皆数》:这是一本让不爱数学的人爱上数学,让热爱数学的人更加热爱的好书。图片发自App学生时代,最大的爱好就是做数学证明题,运用一系列的定理、公式和公理,经过N步的解题过程,最终终于完成证明,是一件多么美妙的事。欧几里得、莱布尼茨,耳熟能详;美丽而又精致的几何图形,二次函数的抛物线……真的无与伦比。所以,后来选择岗位时,毫不犹豫地定了数学。虽然我感性,但并不妨碍我对有着极
- 《数学之美》--第一章:文字和语言 vs 数字和信息
mantch
PDF下载第一章文字和语言vs数字和信息数字、文字和自然语言一样,都是信息的载体,它们之间原本有着天然的联系。语言和数学的产生都是为了同一个目的—记录和传播信息。但是,直到半个多世纪前香农博士提出信息论,人们才开始把数学和信息系统自觉地联系起来。信息:自然语言就是信息的一种,其实从最初的动物世界,再到以人类为主导的世界,都是在传播消息,哪怕是发出怪叫声也是一样的。这跟现在的信息传播模型是一样的。i
- 体验数学之美:绘制曲线
howard2005
与Python共舞红尘圆锥曲线心形线雅可比曲线阿基米德螺线
文章目录一、实战概述二、实战步骤(一)圆锥曲线1、绘制圆2、绘制椭圆3、绘制双曲线4、绘制抛物线(二)心形线(三)雅各布线一、实战概述通过Python编程,我们可以借助matplotlib与numpy库绘制一系列迷人的数学曲线,展现数学之美。例如,利用极坐标绘制椭圆(圆锥曲线的一种),心形线以简单优雅的方程勾勒浪漫形态;洛必达曲线则体现迭代生成的分形魅力;阿基米德螺线以其恒定增长的角度展现出螺旋之
- 这张书单,给你打下商业世界的地基
胡滔的自留地
今天,刘润老师在“刘润”公号里列出了一张提高商业认知的书单。1.《创新者的窘境》作者:克莱顿·克里斯坦森2.《激荡30年》作者:吴晓波3.《德鲁克管理思想精要》作者:彼得·德鲁克4.《管理的常识》作者:陈春花5.《系统之美》作者:德内拉·梅多斯6.《绝对价值》作者:伊塔马尔·西蒙森和艾曼纽·罗森7.《战略几何学》作者:罗伯特·凯德尔8.《数学之美》作者:吴军9.《顾客为什么购买》作者:昂德希尔10
- 《见识》书评
风过无痕8
吴军是知名自然语言处理和搜索专家,硅谷风险投资人,他的著作《数学之美》荣获国家图书馆第八届文津图书奖、第五届中华优秀出版物奖,《文明之光》被评为2014年“中国好书”,《浪潮之巅》荣获“蓝狮子2011年十大极佳商业图书”奖,《智能时代》开启了2016智能时代元年。他曾经担任谷歌资深研究员,设计了谷歌中、日、韩文搜索算法以及谷歌的自然语言分析器。自2008年他开始从事风险投资,并于2014年作为创始
- 数学之美(13)——从坚“整”不渝到伽利略的困惑
刷牙喝凉白开
庞加莱曾经说过:能够做出数学发现的人,是具有感受数学中的秩序、和谐、对称、整齐和什么美感的人。在数的海洋里,总有些规律令人沉迷。坚“整”不渝雅克布·伯努利是瑞士著名的数学家,他的主要发现有对数螺线。对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在数学家的假想中。也许正是这神奇的形状,让苏格兰博物学家和数学
- 数学之美一两处
快乐的阿常艾念宝
数学之美机器学习数学之美机器学习信息指纹加法交换律
引言吴军博士的《数学之美》科普性地介绍了自然语言处理、搜索引擎、语音识别、智能导航等人工智能应用,一些看似很智能、高大上的应用,其背后的数学原理往往却并不复杂,体现了数学之美!如果数学能够这样教,可能很多人也不会头疼于数学了从这点启发我们,在解决问题时,通常需要考虑问题背后的数学原理、模型、理论是什么,然后,依照道的指导进行实践。不然,就仅是在术的层面进行努力,以及修修补补,而不能获得像算法一样广
- NP系列问题详解
前行的七哥
时间复杂度什么是NP问题?这个是我之前比较纠结的一个问题,一直没有搞清楚它的来龙去脉。直到看了《数学之美》附录中的介绍才清楚。要清楚地了解这个问题,得从怎么衡量计算量这个问题开始。现在基本每个学习计算机相关学科的同学都知道,衡量一个算法的计算量是用时间复杂度。现在看起来理所当然的事情,在计算机科学发展初期却是个大问题,因为没有衡量算法的标准,不同算法无法比较优劣。自从有了时间复杂度后,算法优劣可以
- 探索数据的奥秘:一份深入浅出的数据分析入门指南
uncle_ll
数据库数据分析数据挖掘入门
数据分析书籍推荐入门读物深入浅出数据分析啤酒与尿布数据之美数学之美数据分析ScipyandNumpyPythonforDataAnalysisBadDataHandbook集体智慧编程MachineLearninginAction机器学习实战BuildingMachineLearningSystemswithPython数据挖掘导论MachineLearningforHackers专业读物Intr
- 如何用谷歌OKR制定可实现的年度目标
格局林状元
凡事预则立,不预则废。2018年初,我看了吴军老师的《见识》,提到了谷歌的计划制定方法OKR,于是我就模仿做了个Execl,昨天想起了看了下,重要的目标竟然完成了90%,当然有些目标完成度为0。于是今年我继续使用OKR做目标计划。罗胖曾经提过吴军老师一年能完成很多重要的事情,出过《数学之美》《大学之路》等多本畅销书,而且还是硅谷和国内两家风险投资机构的顾问,保持每周运动10小时,保持每年高质量的学
- 妈妈智慧引领,孩子图说数学飞起来!
图说数学王欣向
妈妈智慧引领,孩子图说数学飞起来!图片发自App智慧妈妈们智慧引领二年级的宝贝们学图说,拓思维!我们的专属vip班随时支援,助力宝贝们快速发现数学之美!图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App四年级的哥哥学习图说数学不到一个月,进步巨大,一年级的妹妹也受影响,跟随哥哥步伐!这作业让我佩服!图片发自App图片发自App图片发自A
- 数学之美 第十七章 RSA加密算法
A黄橙橙
预备知识:欧拉函数在数论,对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(其中φ(1)=1)通式为:其中p1,p2...pn为x所有质因数,x是不为0的整数。特殊:若n为质数p的k次幂,因为除了p的倍数外,其他数都与n互质。欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)当n为奇数时,φ(2n)=φ(n)当n为质数时,φ(n)=n-1P.S.积性函数:对于任意互质的
- 学课之美
姚羿臣
今天我就来说一下各门学科的美。语文之美在语文课上袁老师课上生动有趣,老师还在课堂上,让我们提核心问题、然我们学到了很多知识,畅游在语文和老师的知识中。在课外,我们通过小组活动来学习语文,又体验到了不一样的感觉。数学之美能够在张老师的数学课上,老师教会我准确的运用数学符号,并且可以去喜欢上、热爱上它,那你就能领略到数学带给你的美。我认为数学给我带来的美是每一个数字和每一个符号的组成。英语之美英语老师
- 数学之美(5)——兔子数列(斐波那契数列)
刷牙喝凉白开
兔子问题斐波那契数列指的是这样一个数列0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368……这个数列从第3项开始,每一项都等于前两项之和。一、斐波那契包络线如图,首先画出一个大圆,等分36份,并编号1,2,3,…36.将第1个点与第2个、3个、5个、8个、13个、2
- scratch3.0数学之美-初识scratch3.0
爱编程的小熊
1.scratch界面介绍Scratch是麻省理工学院的"终身幼儿园团队"开发的图形化编程工具,主要面对青少年开放。孩子不用记住命令不代表不需要知道命令。积木模块包括10个大类,100多个功能。包括了构成一个完整程序的每个环节,甚至数组和函数。Scratch3.0Scratch3.0相比Scratch2.0有很多改进,界面也有了较大的变化。那问题来了,原来的Scratch2.0还可以用吗,答案是可
- 分享《见识》
我和我的二三四
《见识》由吴军所写。吴军还写有《数学之美》、《浪潮之巅》两本书。这两本书,光书名就吸引我去阅读。用眼所见,成心之识。以下是整理摘录原书的主要内容。一如何培养选择的能力因为容易把精力都浪费在小事上,导致投入在值得关注的大事上的精力反而受到了限制。方法1要有辨别西瓜的能力,分清西瓜和芝麻2要避免芝麻的干扰,减少自己的选项“你的时间在哪,你的成就就在哪”二有见识的人如何改变自己的命运1不妄想一步登天实现
- sigmoid softmax优化
鲤鱼不懂
tensorrt深度学习
1.前言最近在搞模型部署发现,推理速度不能满足我们需求,于是最近学习了优化算子技巧,学到了sigmoid,softmax算子优化,真的数学之美。2.sigmoid算子优化一.算子优化图我们根据sigmoid公式,我们进行求反函数,于是有了上面的等式变化,我们只需要把模型输出的值,直接与阈值比较就可以,比如阈值0.5得分我们可以通过上面等式,换算成模型输出的值,这样模型输出的值,就可以直接比较了,大
- 五一宅家书单-人民日报推荐的30本书
瑞秋在写作
人民日报力荐提升自己必读的30本书,这个假期让自己变得与众不同!1、《平凡的世界》——路遥高度浓缩了中国西北农村的历史变迁过程2、《三体》——刘慈欣“中国科幻文学里程碑”式的作品3、《万历十五年》——黄仁宇原来历史可以如此的有趣、丰富4、《围城》——钱钟书“围在城里的人想逃出来,城外的人想冲进去”5、《数学之美》——吴军把高深的数学原理用通俗易懂的语言讲述出来6、《繁花》——金宇澄“中国科幻文学里
- js数学之美-几何六面翻转 笔记
wudimingwo
这节课,牛逼在六面体的运动,变化,用的都是css3的,关键是class类名用得非常6配合之前学的公式导出鼠标位置判断,就能做出来效果了几何体翻转.wrapper{width:400px;height:400px;perspective:300px;border:1pxsolidblack;}.item{width:100px;height:100px;transform-style:preserv
- 【数学趣味】这些数你知道吗?
海韵互联
数学中有许多新奇、巧妙而又神秘的东西吸引着人们,这是数学的趣味、魅力所在。伽利略曾说过:“数学是上帝用来书写宇宙的文字。”远在古代人们就对“数”产生了某种神秘感,毕达哥拉斯甚至说:数统治着世界。数的许多颇具神奇、令人叹赏的性质,往往使人们感慨不已。1.神奇的等式图1~图5展示了数学之美!图1图2图3图4图52.神奇的分数小数点后面是01,02,…09,10,11,…20,21,…小数点后面两位两位
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found