paddlepaddle使用笔记------安装

环境18.04,nvidia410,cuda9.0,cudnn7.0

1、paddlepaddle官网

http://paddlepaddle.org/paddle

在页面中间有一个块度安装,在这里选择本机的系统,然后会推荐符合条件的最新安装包

当前paddlepaddle的最新版本是1.4.1,

https://pypi.org/project/paddlepaddle-gpu/#history

从上面这个网站可以看到1.4.1的版本后面会有一个后缀post87、post97等,

这里需要注意一下,默认安装书post97,也就是对应cuda9,cudnn7,安装命令

pip3 install paddlepaddle-gpu

环境是cuda8的时候需要根据cudnn选择版本,如下定义版本

pip3 install paddlepaddle-gpu==1.4.1.post87

以上是pip安装,最为方便,此外还有docker,直接编译等,推荐一个教程,很详细

https://blog.csdn.net/qq_33200967/article/details/83052060#UbuntuDocker_237

我在安装的时候直接在虚拟环境中使用pip安装成功了

 

2、bug搜索以及提交

bug提交在github的paddle项目的issue上面

https://github.com/PaddlePaddle/Paddle

其他分支提交的bug比较少,解决也比较少。

最后github虽然可以国内登陆,但是同一个问题,使用百度搜索如果可以搜到5条相关的github上的回答,那么使用google就可以搜到10条,要找到类似问题以及相关解决相对要容易一些。

 

3、代码

paddlepaddle官网提供了API文档,

https://blog.csdn.net/qq_33200967/article/details/83052060#UbuntuDocker_237

在文档中提供了一下简单的深度学习的例子以及讲解,讲解里面有分段的代码功能讲解

paddlepaddle使用笔记------安装_第1张图片

同时,paddlepaddle的github里面也有这些例子的官方代码

https://github.com/PaddlePaddle/book

paddlepaddle使用笔记------安装_第2张图片

1到9都可以单独执行

然后,上面那个详细讲解安装教程的博主也提供了他的学习过程的代码,

https://github.com/yeyupiaoling/LearnPaddle2

特别是博主提供了自定义数据的处理过程

上面这些都是基础算法,基本上使用cpu或者单gpu运行就可以了。除了这些基础方法以外,官方还提供了一些复杂模型的代码。

https://github.com/PaddlePaddle/models

paddlepaddle使用笔记------安装_第3张图片

paddlepaddle使用笔记------安装_第4张图片

 

4、运行

我的系统环境是联想T470笔记本,单GPU,2G,

paddlepaddle使用笔记------安装_第5张图片

paddlepaddle使用笔记------安装_第6张图片

在运行的时候,如果选择cpu,我的代码是直接开始输出epoch的

如果使用gpu运行,会在开头输出系统情况

W0617 17:32:52.020673  2926 device_context.cc:261] Please NOTE: device: 0, CUDA Capability: 50, Driver API Version: 10.1, Runtime API Version: 9.0
W0617 17:32:52.020849  2926 dynamic_loader.cc:107] Can not find library: libcudnn.so. Please try to add the lib path to LD_LIBRARY_PATH.

如果不是cudnn7.3,可能还会有

W0617 17:32:52.020872  2926 dynamic_loader.cc:165] Failed to find dynamic library: libcudnn.so ( libcudnn.so: cannot open shared object file: No such file or directory ) 

不过这些就是输出,不会影响正常运行,如果有报错,那就从下文开始找报错内容。

 File "/home/zz/program/MNIST-paddle/MNIST-test-paddle.py", line 364, in 
    test()
  File "/home/zz/program/MNIST-paddle/MNIST-test-paddle.py", line 281, in test
    exe.run(fluid.default_startup_program())
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/executor.py", line 565, in run
    use_program_cache=use_program_cache)
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/executor.py", line 642, in _run
    exe.run(program.desc, scope, 0, True, True, fetch_var_name)
paddle.fluid.core.EnforceNotMet: Invoke operator fill_constant error.
Python Callstacks: 
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/framework.py", line 1725, in _prepend_op
    attrs=kwargs.get("attrs", None))
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/initializer.py", line 167, in __call__
    stop_gradient=True)
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/framework.py", line 1517, in create_var
    kwargs['initializer'](var, self)
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/layer_helper_base.py", line 382, in set_variable_initializer
    initializer=initializer)
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/layers/tensor.py", line 152, in create_global_var
    value=float(value), force_cpu=force_cpu))
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/optimizer.py", line 136, in _create_global_learning_rate
    persistable=True)
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/optimizer.py", line 275, in _create_optimization_pass
    self._create_global_learning_rate()
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/optimizer.py", line 441, in apply_gradients
    optimize_ops = self._create_optimization_pass(params_grads)
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/optimizer.py", line 469, in apply_optimize
    optimize_ops = self.apply_gradients(params_grads)
  File "/home/zz/env_python3/lib/python3.6/site-packages/paddle/fluid/optimizer.py", line 500, in minimize
    loss, startup_program=startup_program, params_grads=params_grads)
  File "/home/zz/program/MNIST-paddle/MNIST-test-paddle.py", line 253, in test
    optimizer.minimize(avg_loss)
  File "/home/zz/program/MNIST-paddle/MNIST-test-paddle.py", line 364, in 
    test()
C++ Callstacks: 
Enforce failed. Expected allocating <= available, but received allocating:1837034932 > available:1395654400.
Insufficient GPU memory to allocation. at [/paddle/paddle/fluid/platform/gpu_info.cc:262]
PaddlePaddle Call Stacks: 

我在在笔记本上运行该程序的时候报以上错误,在有运行一些代码的4核台机上运行也报以上错误

exe.run(program.desc, scope, 0, True, True, fetch_var_name)
paddle.fluid.core.EnforceNotMet: Invoke operator fill_constant error.

Insufficient GPU memory to allocation. at [/paddle/paddle/fluid/platform/gpu_info.cc:262

调用运算符填充\常量错误。分配的GPU内存不足。

最后在paddlepaddle的issue里面找到了相同的问题,

https://github.com/PaddlePaddle/Paddle/issues/18173

以下是自问自答的提问

https://github.com/PaddlePaddle/Paddle/issues/18173

 

5、多gpu

按照教程中的使用我在代码中加入一下内容

compiled_prog = fluid.compiler.CompiledProgram(
        fluid.default_main_program()).with_data_parallel(
        loss_name=avg_loss.name)

想要直接复制到多gpu,但是运行的时候再次报错

W0618 19:40:39.706670 10145 device_context.cc:261] Please NOTE: device: 1, CUDA Capability: 61, Driver API Version: 10.0, Runtime API Version: 9.0
W0618 19:40:39.710006 10145 device_context.cc:269] device: 1, cuDNN Version: 7.0.
W0618 19:40:41.227665 10145 graph.h:204] WARN: After a series of passes, the current graph can be quite different from OriginProgram. So, please avoid using the `OriginProgram()` method!
2019-06-18 19:40:41,227-WARNING: 
     You can try our memory optimize feature to save your memory usage:
         # create a build_strategy variable to set memory optimize option
         build_strategy = compiler.BuildStrategy()
         build_strategy.enable_inplace = True
         build_strategy.memory_optimize = True
         
         # pass the build_strategy to with_data_parallel API
         compiled_prog = compiler.CompiledProgram(main).with_data_parallel(
             loss_name=loss.name, build_strategy=build_strategy)
      
     !!! Memory optimize is our experimental feature !!!
         some variables may be removed/reused internal to save memory usage, 
         in order to fetch the right value of the fetch_list, please set the 
         persistable property to true for each variable in fetch_list

         # Sample
         conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None) 
         # if you need to fetch conv1, then:
         conv1.persistable = True

                 
I0618 19:40:46.276876 10145 build_strategy.cc:285] SeqOnlyAllReduceOps:0, num_trainers:1
Traceback (most recent call last):
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 267, in 
    main(use_cuda=use_cuda, nn_type=predict)
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 249, in main
    params_filename=params_filename)
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 165, in train
    fetch_list=[avg_loss, acc])
  File "/home/cj1/env-python3/lib/python3.6/site-packages/paddle/fluid/executor.py", line 580, in run
    return_numpy=return_numpy)
  File "/home/cj1/env-python3/lib/python3.6/site-packages/paddle/fluid/executor.py", line 446, in _run_parallel
    exe.run(fetch_var_names, fetch_var_name)
paddle.fluid.core.EnforceNotMet: Invoke operator mul error.
Python Callstacks: 
  File "/home/cj1/env-python3/lib/python3.6/site-packages/paddle/fluid/framework.py", line 1654, in append_op
    attrs=kwargs.get("attrs", None))
  File "/home/cj1/env-python3/lib/python3.6/site-packages/paddle/fluid/layer_helper.py", line 43, in append_op
    return self.main_program.current_block().append_op(*args, **kwargs)
  File "/home/cj1/env-python3/lib/python3.6/site-packages/paddle/fluid/layers/nn.py", line 323, in fc
    "y_num_col_dims": 1})
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 43, in loss_net
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 79, in convolutional_neural_network
    return loss_net(conv_pool_2, label)
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 124, in train
    prediction, avg_loss, acc = net_conf(img, label)
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 249, in main
    params_filename=params_filename)
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 267, in 
    main(use_cuda=use_cuda, nn_type=predict)
C++ Callstacks: 
The places of matrices must be same at [/paddle/paddle/fluid/operators/math/blas_impl.h:392]
PaddlePaddle Call Stacks: 
0       0x7f2ff70bed00p void paddle::platform::EnforceNotMet::Init(char const*, char const*, int) + 352
1       0x7f2ff70bf079p paddle::platform::EnforceNotMet::EnforceNotMet(std::__exception_ptr::exception_ptr, char const*, int) + 137
2       0x7f2ff77a48f4p void paddle::operators::math::Blas::MatMul(paddle::framework::Tensor const&, bool, paddle::framework::Tensor const&, bool, float, paddle::framework::Tensor*, float) const + 388
3       0x7f2ff77a4ef6p paddle::operators::MulKernel::Compute(paddle::framework::ExecutionContext const&) const + 662
4       0x7f2ff77a50e3p std::_Function_handler, paddle::operators::MulKernel, paddle::operators::MulKernel >::operator()(char const*, char const*, int) const::{lambda(paddle::framework::ExecutionContext const&)#1}>::_M_invoke(std::_Any_data const&, paddle::framework::ExecutionContext const&) + 35
5       0x7f2ff8d4e376p paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, boost::variant const&, paddle::framework::RuntimeContext*) const + 662
6       0x7f2ff8d4eae4p paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, boost::variant const&) const + 292
7       0x7f2ff8d4c40cp paddle::framework::OperatorBase::Run(paddle::framework::Scope const&, boost::variant const&) + 332
8       0x7f2ff8b5acaap paddle::framework::details::ComputationOpHandle::RunImpl() + 250
9       0x7f2ff8b4dd60p paddle::framework::details::OpHandleBase::Run(bool) + 160
10      0x7f2ff8ab542dp
11      0x7f2ff7e28a73p std::_Function_handler (), std::__future_base::_Task_setter, std::__future_base::_Result_base::_Deleter>, void> >::_M_invoke(std::_Any_data const&) + 35
12      0x7f2ff718b567p std::__future_base::_State_base::_M_do_set(std::function ()>&, bool&) + 39
13      0x7f30579da827p
14      0x7f2ff8ab4fc2p
15      0x7f2ff718c8a4p ThreadPool::ThreadPool(unsigned long)::{lambda()#1}::operator()() const + 404
16      0x7f30514799e0p
17      0x7f30579d26dbp
18      0x7f3057d0b88fp clone + 63      0x7fQ»

使用官方model,里面的多gpu复制函数是fluid.ParallelExecutor,可以正常运行

paddlepaddle使用笔记------安装_第7张图片

 

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(paddlepaddle使用笔记------安装)