1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
- 继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF。
- 实现initialize, process, close三个方法
- UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型)。初始化完成后,会调用process方法,对传入的参数进行处理,可以通过forword()方法把结果返回。最后close()方法调用,对需要清理的方法进行清理
3. 实例
如下代码对形如key:value;key:value;格式的字符串分拆成key,value,返回结果为key, value两个字段
import java.util.ArrayList; import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF; import org.apache.hadoop.hive.ql.exec.UDFArgumentException; import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException; import org.apache.hadoop.hive.ql.metadata.HiveException; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory; import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector; import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; public class ExplodeMap extends GenericUDTF { @Override public void close() throws HiveException { // TODO Auto-generated method stub } @Override public StructObjectInspector initialize(ObjectInspector[] args) throws UDFArgumentException { if (args.length != 1) { throw new UDFArgumentLengthException("ExplodeMap takes only one argument"); } if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) { throw new UDFArgumentException("ExplodeMap takes string as a parameter"); } ArrayList<String> fieldNames = new ArrayList<String>(); ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>(); fieldNames.add("col1"); fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector); fieldNames.add("col2"); fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector); return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs); } @Override public void process(Object[] args) throws HiveException { String input = args[0].toString(); String[] test = input.split(";"); for (int i = 0; i < test.length; i++) { try { String[] result = test[i].split(":"); forward(result); } catch (Exception e) { continue; } } } }
4. 如何使用UDTF
4.1 在select中使用UDTF
select explode_map(properties) as (col1,col2) from my_table
- 不可以添加其他字段使用:select a, explode_map(properties) as (col1,col2) from my_table
- 不可以嵌套调用:select explode_map(explode_map(properties)) from my_table
- 不可以和group by/cluster by/distribute by/sort by一起使用:select explode_map(properties) as (col1,col2) from src group by col1, col2
4.2 结合lateral view使用
select src.id, mytable.col1, mytable.col2 from src lateral view explode_map(properties) mytable as col1, col2;
此方法更为方便日常使用。执行过程相当于单独执行了两次抽取,然后union到一个表里。
5.总结
使用lateral view之后,那么col1和col2相当于普通的列,可以参与查询,计算