【Hive八】Hive用户自定义生成表函数(UDTF)

1. 什么是UDTF

 

UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集

 

2. 如何实现UDTF

  • 继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF。
  • 实现initialize, process, close三个方法
  • UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型)。初始化完成后,会调用process方法,对传入的参数进行处理,可以通过forword()方法把结果返回。最后close()方法调用,对需要清理的方法进行清理

3. 实例

如下代码对形如key:value;key:value;格式的字符串分拆成key,value,返回结果为key, value两个字段

import java.util.ArrayList;

import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;

public class ExplodeMap extends GenericUDTF {
    @Override
    public void close() throws HiveException {
        // TODO Auto-generated method stub
    }

    @Override
    public StructObjectInspector initialize(ObjectInspector[] args)
            throws UDFArgumentException {
        if (args.length != 1) {
            throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
        }
        if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
            throw new UDFArgumentException("ExplodeMap takes string as a parameter");
        }
        ArrayList<String> fieldNames = new ArrayList<String>();
        ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
        fieldNames.add("col1");
        fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
        fieldNames.add("col2");
        fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
        return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
    }

    @Override
    public void process(Object[] args) throws HiveException {
        String input = args[0].toString();
        String[] test = input.split(";");
        for (int i = 0; i < test.length; i++) {
            try {
                String[] result = test[i].split(":");
                forward(result);
            } catch (Exception e) {
                continue;
            }
        }
    }
}

 

4. 如何使用UDTF

4.1 在select中使用UDTF

 

select explode_map(properties) as (col1,col2) from my_table

 

  • 不可以添加其他字段使用:select a, explode_map(properties) as (col1,col2) from my_table
  • 不可以嵌套调用:select explode_map(explode_map(properties)) from my_table
  • 不可以和group by/cluster by/distribute by/sort by一起使用:select explode_map(properties) as (col1,col2) from src group by col1, col2

4.2 结合lateral view使用

 

select src.id, mytable.col1, mytable.col2 from src lateral view explode_map(properties) mytable as col1, col2;

 此方法更为方便日常使用。执行过程相当于单独执行了两次抽取,然后union到一个表里。

 

 5.总结

 使用lateral view之后,那么col1和col2相当于普通的列,可以参与查询,计算

 

 

你可能感兴趣的:(hive)