题意:鲍勃喜欢玩电脑游戏,特别是战略游戏,但有时他无法找到解决方案,速度不够快,那么他很伤心。现在,他有以下的问题。他必须捍卫一个中世纪的城市,形成了树的道路。他把战士的最低数量的节点上,使他们可以观察所有的边。你能帮助他吗?士兵,鲍勃把一个给定的树,你的程序应该发现的最小数目。输入文件包含多个数据集的文本格式。
我们来先了解一下什么是最小顶点覆盖;
图G的顶点覆盖是一个顶点集合V,使得G中的每一条边都接触V中的至少一个顶点。我们称集合V覆盖了G的边。最小顶点覆盖是用最少的顶点来覆盖所有的边。顶点覆盖数是最小顶点覆盖的大小。
相应地,图G的边覆盖是一个边集合E,使得G中的每一个顶点都接触E中的至少一条边。
如果只说覆盖,则通常是指顶点覆盖,而不是边覆盖。
由König定理定理可知,二分图的最小顶点覆盖数等于二分图的最大匹配数。
关于König定理的证明网上也比较多。大家可以百度找一找。题目中的这棵树之所以可以当成二分图,是因为如果从一个点出发,那么可以将整棵树分成奇数点层和偶数点层。由于树是一种特殊的图。n个点由(n-1)条边连接起来。这样假定一个点为树的根,假设各点间的边权值为1。那么从树根出发遍历整棵树,根据各点到根的路径的奇偶性即可将所有点分成两个集合。奇数点与偶数点交替出现。假设奇数点与偶数点连边,偶数点则继续和下一层的奇数点连边。这就与二分图中同类集合点间无边,不同类集合点间有边相连吻合起来了。所以满足二分图的性质。也可以用二分图最大匹配进行求解。
由于对该二分图进行了补全(无向图),边增加为原来边的二倍。所以最终结果要除以2。
二分图最小顶点覆盖=双向二分图最大匹配/2
因为如果不补全的话会因为无法确定边的方向而使得答案错误
#include
using namespace std;
const int N=1500+5;
vector G[N];
int visit[N];
int match[N];
int n;
int Find(int u)//匈牙利算法
{
for(int i=0;i
匈牙利算法模板
有个讲解不错的网址 http://blog.csdn.net/dark_scope/article/details/8880547/
bool find(int x){
int i,j;
for (j=1;j<=m;j++){ //扫描每个妹子
if (line[x][j]==true && used[j]==false)
//如果有暧昧并且还没有标记过(这里标记的意思是这次查找曾试图改变过该妹子的归属问题,但是没有成功,所以就不用瞎费工夫了)
{
used[j]=1;
if (girl[j]==0 || find(girl[j])) {
//名花无主或者能腾出个位置来,这里使用递归
girl[j]=x;
return true;
}
}
}
return false;
}
for (i=1;i<=n;i++)
{
memset(used,0,sizeof(used)); //这个在每一步中清空
if find(i) all+=1;
}
另外也可以用树形DP来做,
【状态】:
dp[i][0] 为以 i 为根节点,并且该节点不放,所需要的最少的点数
dp[i][1] 为以 i 为根节点,并且该节点放,所需要的最少的点数
【转移方程】:
dp[i][0]=sum(dp[son[i][j]][1]) 该点不放的话,那么它的儿子节点必须都放,这样之间的边才可以被覆盖
dp[i][1]=sum(min(dp[son[i][j]][0],dp[son[i][j]][1])) 该点放的话,那么它的儿子节点就有两种决策,一种是放,一种是不放,取 min 就行了
#include
using namespace std;
const int N=1505;
int dp[N][2],f[N];
int son[N][N],Size[N];
int n;
int dfs(int pos ,int val)
{
if(dp[pos][val]!=INT_MIN)
return dp[pos][val];
int sum= val;
for(int i=0; i