Numpy & Torch对比(莫烦PyTorch 动态神经网络笔记)

import torch
import numpy as np

np_data = np.arange(6).reshape(2,3)
torch_data = torch.from_numpy(np_data)
tensor2array = torch_data.numpy()
print(
    '\nnumpy',np_data,
    '\ntorch',torch_data,
    '\ntensor2array',tensor2array
)

# abs
data = [-1,-2,1,2]
tensor = torch.FloatTensor(data) #32bit
print(
    '\nabs',
    '\nnumpy',np.abs(data),    #[1 2 1 2]
    '\ntorch',torch.abs(tensor) #[1 2 1 2]
)

print(
    '\nsin'
    '\nnumpy',np.sin(data),
    '\ntorch',torch.sin(tensor)
)

data = [[1,2],[3,4]]
tensor = torch.FloatTensor(data)

print(
    '\nnumpy',np.matmul(data,data),
    '\ntorch',torch.mm(tensor,tensor)
)
data = np.array(data)
print(
    '\nnumpy',data.dot(data),
    #'\ntorch',tensor.dot(tensor)
)

运行结果:

numpy [[0 1 2]
 [3 4 5]] 
torch tensor([[ 0,  1,  2],
        [ 3,  4,  5]]) 
tensor2array [[0 1 2]
 [3 4 5]]


abs 
numpy [1 2 1 2] 
torch tensor([ 1.,  2.,  1.,  2.])


sin
numpy [-0.84147098 -0.90929743  0.84147098  0.90929743] 
torch tensor([-0.8415, -0.9093,  0.8415,  0.9093])


numpy [[ 7 10]
 [15 22]] 
torch tensor([[  7.,  10.],
        [ 15.,  22.]])

你可能感兴趣的:(机器学习,Python)