tf.identity()的理解

import tensorflow as tf
x = tf.Variable(1.0)
x_plus_1 = tf.assign_add(x, 1)

with tf.control_dependencies([x_plus_1]):
    y = x
    z=tf.identity(x,name='x')
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for i in range(5):
        print(sess.run(z))

输出是:2,3,4,5,6

但是:

import tensorflow as tf
x = tf.Variable(1.0)
x_plus_1 = tf.assign_add(x, 1)

with tf.control_dependencies([x_plus_1]):
    y = x
    z=tf.identity(x,name='x')
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for i in range(5):
        print(sess.run(y))

的输出是:1,1,1,1,1

你可能感兴趣的:(我的Python学习,tensorflow学习)