- Python 数据分析与可视化:从基础到进阶的技术实现与优化策略
女码农的重启
python数据分析开发语言
数据分析与可视化是数据科学领域的核心技能,Python凭借其丰富的库生态和灵活的编程范式,成为该领域的首选工具。本文将系统讲解Python数据分析与可视化的技术栈实现,从基础操作到性能优化,结合实战场景提供可复用的解决方案。数据分析核心库技术解析Pandas数据处理引擎原理Pandas作为数据分析的基石,其核心优势在于基于NumPy的矢量运算和高效的内存管理。与Excel的单元格级操作不同,Pan
- Python数据分析:从入门到精通
引言在当今数据驱动的时代,数据分析已成为企业和组织做出明智决策的关键。Python作为一种强大的编程语言,因其简洁性和丰富的数据分析库而成为数据科学领域的首选工具。无论你是初学者还是有一定经验的数据分析师,本指南都将带你从入门到精通Python数据分析,掌握必备技能和最佳实践。数据分析的重要性与Python的角色数据分析涉及收集、处理和解释数据,以揭示模式、趋势和见解。它有助于解决复杂问题,优化业
- Python数据分析案例|从模拟数据到可视化:零售门店客流量差异分析全流程
1.依赖库导入importmatplotlib.pyplotaspltimportnumpyasnpimportpandasaspdfrommatplotlibimportfont_managerfromdatetimeimportdatetimematplotlib.pyplot:用于绘制图表。numpy:numpy:pandas:虽然代码中未font_manager:设置datetime:生成
- Python数据分析学习笔记:字符串统计
NIKEeri
pythonpandas字符串匹配python数据分析学习
一、题目来源KagglePandas-Exercise:SummaryFunctionsandMaps章节二、题目要求描述一瓶葡萄酒时,可用的词汇有限。哪种词出现频率更高:“tropical”还是“fruity”?统计description列中这两个词的出现次数。忽略大小写。三、我的思路(使用str.contains统计总次数)tropical_count=reviews['description
- python数据分析scipy库安装与使用
范哥来了
python数据分析scipy
安装scipy库scipy是一个用于科学计算的Python库,它依赖于numpy。如果你还没有安装scipy,可以使用以下命令来安装:pipinstallscipy或者,如果你使用的是Anaconda环境,可以通过conda来安装:condainstallscipy使用scipy库scipy提供了许多用于科学计算的功能,包括统计、优化、积分、线性代数等。下面是一些常见的用法示例。1.导入scipy
- Python,C++开发上市辅导方法与实操APP
Geeker-2025
pythonc++
#上市辅导方法与实操APP-Python与C++综合解决方案下面是一个完整的上市辅导方法与实操APP的实现方案,结合Python和C++的优势,涵盖金融建模、合规分析、流程管理等多个方面:```mermaidgraphTDA[上市辅导系统]-->B[核心引擎]A-->C[应用平台]B-->D[C++金融计算引擎]B-->E[Python数据分析]B-->F[合规检查系统]C-->G[Web管理平台
- 《python 数据分析 从入门到精通》读书笔记|了解数据分析|数据分析基础知识
《python数据分析从入门到精通》读书笔记第一章:了解数据分析1.1什么是数据分析数据分析是利用数学、统计学理论与实践相结合的科学统计分析方法,对Excel数据、数据库中的数据、收集的大量数据、网页抓取的数据进行分析,从中提取有价值的信息并形成结论进行展示的过程。数据分析实际上是通过数据的规律来解决业务问题,以帮助实际工作中的管理者做出判断和决策。数据分析包括以下几个主要内容:(1)现状分析:分
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- Python 数据分析与机器学习入门 (一):环境搭建与核心库概览
程序员阿超的博客
Pythonpython数据分析机器学习入门教程环境搭建AnacondaJupyterNotebook
Python数据分析与机器学习入门(一):环境搭建与核心库概览本文摘要本文是Python数据分析与机器学习入门系列的第一篇,专为初学者设计。文章首先阐明了Python在数据科学领域的优势,然后手把手指导读者如何使用Anaconda搭建一个无痛、专业的开发环境,并介绍了强大的交互式工具JupyterNotebook的基本操作。最后,简要概览了NumPy、Pandas、Scikit-learn等核心库
- 物流数据行业分析(包含完整代码和流程)------python数据分析师项目Anaconda
欲梦yhd
数据分析项目大数据condapython
一、引言数据分析流程为明确目的、获取数据、数据探索和预处理、分析数据、得出结论、验证结论、结果展现。物流业务中对数据进行深入挖掘和分析的过程,旨在提高运输效率、降低运输成本、提高客户满意度,以及提高公司的竞争力。本案例物流数据分析目的:a、配送服务是否存在问题b、是否存在尚有潜力的销售区域c、商品是否存在质量问题二、详细流程1、数据预处理(数据清洗)(1)数据导入使用panda库读取数据,编码方式
- Python 数据分析实践经验与学习心得
lzzy_sj_0999
python数据分析开发语言
在当今数据驱动的时代,Python以其丰富的库和便捷的语法,成为数据分析领域的首选语言。本文将结合实际案例,分享Python数据分析的学习心得与实践经验,涵盖数据读取、清洗、分析及可视化等关键环节,希望能为大家的学习和工作提供帮助。一、数据分析必备库介绍在Python数据分析中,有几个核心库是必须掌握的,它们就像我们手中的“神兵利器”,能够高效完成各种数据分析任务。Pandas:用于数据处理和分析
- 《Python数据分析与挖掘实战》Chapter8中医证型关联规则挖掘笔记
茫茫大地真干净
机器学习Python数据挖掘
最近在学习《Python数据分析与挖掘实战》中的案例,写写自己的心得。代码分为两大部分:1.读取数据并进行聚类分析2.应用Apriori关联规则挖掘规律1.聚类部分函数分析:defprogrammer_1():datafile="C:/Users/longming/Desktop/chapter8/data/data.xls"processedfile="C:/Users/longming/Des
- python数据分析张俊红_Python数据分析实战基础 | 初识Pandas
weixin_39678531
python数据分析张俊红
这是Python数据分析实战基础的第一篇内容,主要是和Pandas来个简单的邂逅。已经熟练掌握Pandas的同学,可以加快手速滑动浏览或者直接略过本文。01重要的前言这段时间和一些做数据分析的同学闲聊,我发现数据分析技能入门阶段存在一个普遍性的问题,很多凭着兴趣入坑的同学,都能够很快熟悉Python基础语法,然后不约而同的一头扎进《利用Python进行数据分析》这本经典之中,硬着头皮啃完之后,好像
- python数据分析第9天
雪球滚滚滚
数据分析python数据挖掘
python数据分析第9天电商网站用户/订单/活动数据分析项目商业模式B2B:商家对商家(企业卖家对企业买家),交易双方都是企业,最典型的案例就是阿里巴巴,汇聚了各行业的供应商,特点是订单量一般较大。B2C:商家对个人(企业卖家对个人买家),例如:唯品会,聚美优品。B2B2C:商家对商家对个人,例如:天猫、京东。C2C:个人(卖家)对个人(买家),例如:淘宝、人人车。O2O:线上(售卖)到线下(提
- Python数据处理三剑客:NumPy、Pandas和xarray全面详解
AI开发学习分享
python数据分析pythonnumpypandas
在Python数据分析领域,NumPy、Pandas和xarray是最核心的三个库。本文将详细介绍它们的功能、用法和区别,并提供大量实用代码示例。一、NumPy:科学计算基础库NumPy是Python科学计算的基础包,提供了高性能的多维数组对象和各种计算工具。1.1基本数组操作importnumpyasnp#创建数组arr1=np.array([1,2,3,4])#一维数组arr2=np.arra
- 100个Pandas练习题:从入门到精通的实战指南
陆骊咪Durwin
100个Pandas练习题:从入门到精通的实战指南100-pandas-puzzles100datapuzzlesforpandas,rangingfromshortandsimpletosupertricky(60%complete)项目地址:https://gitcode.com/gh_mirrors/10/100-pandas-puzzles前言Pandas作为Python数据分析的核心库,
- Python 数据分析与可视化实践与python数据分析绘图表的实现,和实际的完整案例
Q_ytsup5681
python数据分析开发语言plotlymatplotlib
本文链接:Python数据分析与可视化实践与python数据分析绘图表的实现,和实际的完整案例-CSDN博客学习Python数据可视化对于数据分析和数据科学领域是至关重要的,它有着许多作用,包括但不限于以下几个方面:1.数据理解与探索:可视化使得数据更加直观,通过图表和图形,可以更容易地观察数据的分布、趋势和模式。这有助于深入理解数据,识别异常值和发现潜在的关联性。2.决策支持:数据可视化为决策提
- python数据分析 期末测验,python数据分析基础题库
Leospanb87
python开发语言人工智能
大家好,小编来为大家解答以下问题,python数据分析与应用选择题答案,python数据分析与应用课后题,现在让我们一起来看看吧!文章目录一、选择题二、填空题三、判断题四、代码分析题五、程序题一、选择题1.sum(range(0,101)的结果是()A.5050B.5151C.0D.101A2.下面哪个不是python合法的标识符()A.int32B.70XLC.selfD.__name__B3.
- python数据分析与可视化
蓝宗林
python数据分析信息可视化
一、Python数据分析概述Python是一种解释型、交互式的编程语言,其设计理念强调代码的可读性和简洁性。Python的语法结构简单,支持面向对象、过程式和函数式三种编程范式,使得Python成为一种强大而灵活的编程语言。Python数据分析主要包括数据清洗、数据探索和数据可视化三个部分。数据清洗是数据分析的重要环节,主要是对数据进行预处理,包括缺失值处理、异常值处理、数据类型转换等。数据探索则
- Python数据分析与可视化理论知识
Python数据分析概述Python数据分析依赖的两个对象表格对象实现统计分析数据预处理Matplotlib数据可视化总结Python数据分析概述数据分析的概述数据分析:用适当的统计分析方法将收集来的大量数据进行分析,将他们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析的类别:描述性数据分析、探索性数据分析
- 3648766
天浊海
pythonpycharmsklearn
1.Python数据分析介绍及环境搭建1.1python数据分析简介【了解】1.1.1python做数据分析的优势可以独立完成数据分析的各种任务功能强大,有海量的开源包(pandas,numpy…)处理海量数据效率高开源免费1.1.2常用python数据分析开源库numpy:用于数组计算pandas:分析结构化数据的工具集series:类似一维数组的对象(一行数据或者一列数据)dataframe:
- Python数据分析的基本步骤
在焦虑的沙漠里种一棵树
python数据分析开发语言
数据分析的基本步骤(基于Python)一、引言在当今数字化时代,数据已成为企业、科研机构等组织的重要资产。有效地进行数据分析可以帮助我们从海量的数据中提取有价值的信息,从而支持决策制定、优化流程、发现趋势等。Python作为一种强大的编程语言,拥有丰富的数据分析库,如Pandas、NumPy、Matplotlib等,为数据分析工作提供了极大的便利。本文将详细阐述基于Python的数据分析基本步骤,
- Python数据分析从小白到高手--数据可视化分析
王国平
信息可视化python数据分析人工智能大数据数据挖掘开发语言
Python是一种功能强大的编程语言,也是一种流行的数据分析工具,其数据可视化能力也非常强大,本章我们将结合实际案例介绍Python的主要数据可视化库,包括Matplotlib、Pyecharts、Seaborn、Plotly、Altair、NetworkX等。7.1Matplotlib7.1.1Matplotlib库简介Matplotlib是Python中最流行的数据可视化库之一,基于Numpy
- 【无痛学Python】Pandas数据载入与预处理,看这一篇就够了!
Skrrapper
Pythonpythonpandas数据库
【Python数据分析】Pandas数据载入与预处理,看这一篇就够了!对于数据分析而言,数据大部分来源于外部数据,例如CSV文件、Excel文件以及数据库文件等等。我们要把各种格式的数据转换成Pandas可处理的Series和DataFrame数据格式,进行完数据分析与处理之后再重新存储到外部文件中,这就是Pandas的数据载入与预处理。数据载入其实对于读/写文件和存储文件来说,不同类型文件的函数
- Python 数据分析:NumPy 库的使用
小张在编程
python数据分析numpy
引言:为什么说NumPy是Python数据分析的“基石”?在Python数据分析领域,有这样一句话:“没有NumPy,就没有Pandas、Matplotlib和Scikit-learn”。作为Python科学计算的核心库,NumPy(NumericalPython)凭借高效的多维数组(ndarray)和向量化运算能力,成为了所有数据分析工具的底层支撑。无论是处理百万级别的销售数据,还是实现复杂的机
- python数据分析期末_Python数据分析期末作业
xander Sun
python数据分析期末
Python数据分析期末作业(50分)一、名称:国民经济核算季度数据分析可视化处理;二、需求:根据文件《国民经济核算季度数据.npz》提供的各年中每个季度的数据,完成如下操作处理:1、绘制直方图:(1)在一个画板中绘制2000年、2017年第一季度国民生产总值产业构成分布、行业构成分布直方图,其效果形式如下;(2)要求:?每个图形的标题、轴标签、刻度、图形颜色、柱形宽度与效果图中的完全一致;?在每
- 1、Python数据分析:数据的采集
数字化与智能化
Python数据分析python数据分析python数据的采集
一、数据的采集数据采集是系统性工程,需平衡技术、成本与合规性。在实际操作中,建议从最小可行采集方案(MVP)起步,逐步迭代优化,同时建立数据治理规范,确保长期可持续性。1.数据采集的核心目标全面性:覆盖关键维度,避免信息缺失。准确性:确保数据真实反映现实,减少误差。时效性:数据需满足实时或近实时需求(如金融交易监控)。合规性:遵守隐私保护(如GDPR)、数据安全等法律法规。2.数据来源分类(1)第
- 如何进行Python数据分析?正确的“入门之路”三部曲
白帽黑客麦叔
Pythonpython数据分析开发语言职场和发展Python教程
前言Python是一种面向对象、直译式计算机程序设计语言,由于他简单、易学、免费开源、可移植性、可扩展性等特点,Python又被称之为胶水语言。下图为主要程序语言近年来的流行趋势,Python受欢迎程度扶摇直上。由于Python拥有非常丰富的库,使其在数据分析领域也有广泛的应用。一、为什么要用Python做数据分析?在我看来,大概有3大理由。广度:各行各业都有自己的商业场景,每一个行业都需要使用数
- 如何进行Python数据分析?正确的“入门之路”三部曲!_python医学数据分析入门
2401_84301948
程序员网络安全学习面试
给大家的福利零基础入门对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。同时每个成长路线对应的板块都有配套的视频提供:因篇幅有限,仅展示部分资料网络安全面试题绿盟护网行动还有大家最喜欢的黑客技术网络安全源码合集+工具包所有资料共282G,朋友们如果有需要全套《网络安全入门+黑客进阶学习资源包》,可以扫描下方二维码
- 【数据分析】第四章 pandas简介(1)
神秘敲码人
数据分析pythonpandas
4.1pandas:Python数据分析库pandas是一个专门为数据分析量身定制的开源Python库。在当今的Python数据科学界,无论是专业研究还是进行统计分析和决策,pandas都是每一位数据专业人士不可或缺的基础工具。这个强大的库由WesMcKinney于2008年开始设计和开发。到了2012年,他的同事SienChang也加入了开发团队。正是他们二人的共同努力,造就了Python社区中
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">