Python程序中的进程操作-进程间数据共享(multiprocess.Manager)

目录

  • 一、进程之间的数据共享
    • 1.1 Manager模块介绍
    • 1.2 Manager例子

一、进程之间的数据共享

展望未来,基于消息传递的并发编程是大势所趋

即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合,通过消息队列交换数据。

这样极大地减少了对使用锁定和其他同步手段的需求,还可以扩展到分布式系统中。

但进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题。

以后我们会尝试使用数据库来解决现在进程之间的数据共享问题。

1.1 Manager模块介绍

进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的。

虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此。

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array.

1.2 Manager例子

from multiprocessing import Manager,Process,Lock
def work(d,lock):
    with lock:  # 不加锁而操作共享的数据,肯定会出现数据错乱
        d['count']-=1

if __name__ == '__main__':
    lock=Lock()
    with Manager() as m:
        dic=m.dict({'count':100})
        p_l=[]
        for i in range(100):
            p=Process(target=work,args=(dic,lock))
            p_l.append(p)
            p.start()
        for p in p_l:
            p.join()
        print(dic)

你可能感兴趣的:(Python程序中的进程操作-进程间数据共享(multiprocess.Manager))