pandas join merge

SQL里面的连接在pandas里面是pd.merge,而用pd.DataFrame.join()和pd.merge的效果如何,达到一致呢?


Examples
--------
>>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
...                        'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})

>>> caller
    A key
0  A0  K0
1  A1  K1
2  A2  K2
3  A3  K3
4  A4  K4
5  A5  K5

>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
...                       'B': ['B0', 'B1', 'B2']})

>>> other
    B key
0  B0  K0
1  B1  K1
2  B2  K2

Join DataFrames using their indexes.

>>> caller.join(other, lsuffix='_caller', rsuffix='_other')

>>> caller.join(other.set_index('key'), on='key')

>>>     A key    B
    0  A0  K0   B0
    1  A1  K1   B1
    2  A2  K2   B2
    3  A3  K3  NaN
    4  A4  K4  NaN
    5  A5  K5  NaN

>>> pd.merge(caller, other, on='key', how='left')
>>>     A key    B
    0  A0  K0   B0
    1  A1  K1   B1
    2  A2  K2   B2
    3  A3  K3  NaN
    4  A4  K4  NaN
    5  A5  K5  NaN

pd.DataFrame.join里面, 必须有一个的on值对应成index,就是例子中的set_index(‘key’),才能把on=’key’,达到跟pd.merge一样的效果

你可能感兴趣的:(Python)