Python实现中缀表达式向后缀表达式

from pythonds.basic.stack import Stack

def infixToPostfix(infixexpr):
	# prec字典存储着运算符的优先级
	prec = {}
	prec["*"] = 3
	prec["/"] = 3
	prec["+"] = 2
	prec["-"] = 2
	prec["("] = 1
	# 定义空栈存储运算符出栈和进栈操作结果
	openStack = Stack()
	# 存储最后的后缀表达式的结果list
	postficList = []
	# tokenList存储将表达式分割字符后的list,要求表达式中的字符之间必须有空格
	tokenList = infixexpr.split()

	for token in tokenList:
		# 只要分割的字符在A-Z或者阿拉伯数字0-9之间放到postficList
		if token in "ABCDEFGHIJKLMNOPQRSTUVWXYZ" or token in "0123456789":
			postficList.append(token)
			# 左括弧匹配
		elif token == '(':
			openStack.push(token)
		elif token == ')':
			toptoken = openStack.pop()
			# 非括弧符号匹配
			while toptoken != '(':
				postficList.append(toptoken)
				toptoken = openStack.pop()
		else:
			# 运算符优先级比较
			while (not openStack.isEmpty()) and (prec[openStack.peek()] >= prec[token]):
				postficList.append(openStack.pop())
			openStack.push(token)
	while not openStack.isEmpty():
		postficList.append(openStack.pop())

	return " ".join(postficList)

if __name__ == '__main__':
	print(infixToPostfix("A * B + C * D"))
	print(infixToPostfix("( ( A * B ) + ( C * D ) )"))
	print(infixToPostfix("A + B * C + D"))
	print(infixToPostfix("( A + B ) * ( C + D )"))
	print(infixToPostfix("A * B + C * D"))
	print(infixToPostfix("A + B + C + D"))

Python实现中缀表达式向后缀表达式_第1张图片
根据上面的求解后缀表达式算法,然后我们继续深入,根据表达式求出后缀表达式后在求出表达式的结果,就走完计算机存储体系中关于表达式计算的完整过程。

from pythonds.basic.stack import Stack

def infixToPostfix(infixexpr):
	# prec字典存储着运算符的优先级
	prec = {}
	prec["*"] = 3
	prec["/"] = 3
	prec["+"] = 2
	prec["-"] = 2
	prec["("] = 1
	# 定义空栈存储运算符出栈和进栈操作结果
	openStack = Stack()
	# 存储最后的后缀表达式的结果list
	postficList = []
	# tokenList存储将表达式分割字符后的list,要求表达式中的字符之间必须有空格
	tokenList = infixexpr.split()

	for token in tokenList:
		# 只要分割的字符在A-Z或者阿拉伯数字0-9之间放到postficList
		if token in "ABCDEFGHIJKLMNOPQRSTUVWXYZ" or token in "0123456789":
			postficList.append(token)
			# 左括弧匹配
		elif token == '(':
			openStack.push(token)
		elif token == ')':
			toptoken = openStack.pop()
			# 非括弧符号匹配
			while toptoken != '(':
				postficList.append(toptoken)
				toptoken = openStack.pop()
		else:
			# 运算符优先级比较
			while (not openStack.isEmpty()) and (prec[openStack.peek()] >= prec[token]):
				postficList.append(openStack.pop())
			openStack.push(token)
	while not openStack.isEmpty():
		postficList.append(openStack.pop())

	return " ".join(postficList)

def postficEval(infixexpr):
	openStack = Stack()
	# 先转换中缀表达式为后缀表达式
	tokenList = infixToPostfix(infixexpr).split()
	# print(tokenList)

	for token in tokenList:
		# 遇到操作数就压栈
		if token in "0123456789":
			openStack.push(int(token))
		else:
			# 遇到操作运算符就出站,并且计算最近的两个操作数
			# 这里因为操作数的相对顺序原因,第一个操作数是栈顶第二个元素
			openTop2 = openStack.pop()
			openTop1 = openStack.pop()
			# 执行计算
			result = opMath(token, openTop1, openTop2)
			# 返回结果继续压栈
			openStack.push(result)
	# 直到栈空间只剩下一个操作数,那么就弹出即为最终结果
	return openStack.pop()

def opMath(op, op1, op2):
	if op == '*':
		return op1 * op2
	elif op == '/':
		return op1 / op2
	elif op == '+':
		return op1 + op2
	else:
		return op1 - op2


if __name__ == '__main__':
	print(infixToPostfix("A * B + C * D"))
	print(infixToPostfix("( ( A * B ) + ( C * D ) )"))
	print(infixToPostfix("A + B * C + D"))
	print(infixToPostfix("( A + B ) * ( C + D )"))
	print(infixToPostfix("A * B + C * D"))
	print(type(infixToPostfix("A * B + C * D")))
	print(len(infixToPostfix("A * B + C * D")))
	print(infixToPostfix("A + B + C + D"))

	print('=================================')
	print(postficEval("3 * ( 2 - 3 )"))
Python实现中缀表达式向后缀表达式_第2张图片

你可能感兴趣的:(python)