最大子矩形问题学习笔记

个人博客链接

很经典的国家集训队论文:浅谈用极大化思想解决最大子矩形问题

最大子矩形问题:在一个给定的矩形网格中有一些障碍点,要找出网格内部不包含任何障碍点,且边界与坐标轴平行的最大子矩形。

悬线法 O(nm) O ( n m )

个人理解:枚举在子矩形底边上的一个点,将它尽可能地向上扩展成一条高线,然后将这条高左右尽可能地平移得到一个矩形,用此矩形更新答案。
枚举的复杂度已经达到了 O(nm) O ( n m ) ,所以我们需要预处理扩展和平移操作。

我们可以dp(或者叫递推也行)预处理:将每个点尽可能向上、向左、向右扩展到的位置存在数组 u[][],l[][],r[][] u [ ] [ ] , l [ ] [ ] , r [ ] [ ] 中(当然,存向上、向左、向右扩展的长度也行,但存位置对求答案来说更方便一点)

For i = 1 to n
    For j = 1 to m
        u[i][j] = (能从(i-1,j)走到(i,j)) ? u[i-1][j] : i;
        l[i][j] = (能从(i,j-1)走到(i,j)) ? l[i][j-1] : j;
    For j = m to 1
        r[i][j] = (能从(i,j+1)走到(i,j)) ? r[i][j+1] : j;

预处理后我们得到了点 (i,j) ( i , j ) 的高线。但是对于向左和向右,我们需要知道的不是每个向左向右扩展的位置,而是每条高线向左向右扩展的位置,这个问题我们可以递推出来:

For i = 2 to n
    For j = 1 to m
        if 能从(i-1,j)走到(i,j)
            l[i][j] = max(l[i][j], l[i-1][j]
            r[i][j] = min(r[i][j], r[i-1][j]

矩形面积就是 (r[i][j]l[i][j]+1)(iu[i][j]+1) ( r [ i ] [ j ] − l [ i ] [ j ] + 1 ) ∗ ( i − u [ i ] [ j ] + 1 )

如此以来,我们就 O(nm) O ( n m ) 地解决了这个问题。

单调栈 O(nm) O ( n m )

将每个点尽可能向上、向左、向右扩展到的长度存在数组 u[][],l[][],r[][] u [ ] [ ] , l [ ] [ ] , r [ ] [ ] 中。具体做法如下:
For i = 1 to n 枚举矩形底边,对每一次枚举维护一个单增栈,存储的数据包括高度与宽度,For j = 1 to m,如果当前点高度大于栈顶元素高度,就直接入栈;否则,不断弹出栈顶元素,最后将所有弹出元素的宽度之和加上自身宽度作为新的宽度入栈。这样,我们就得到了一个点向左能扩展的最大长度(手动模拟一下就清楚了)。同理,For j = m to 1 就可以求出一个点向右扩展的最大长度。(当然,不用反过来for也能求出来,但是反过来for一遍挺方便的,何乐而不为?)
单调栈做法的思想其实和悬线法本质上是一样的,只不过省去了递推那一步。

注意:有些题并不是两种方法都可以的

O(S2) O ( S 2 ) 算法

以奶牛浴场为经典的一类题,详见论文以及洛谷题解。

例题

hdu1506 / poj2559

底边已经定了,直接考察单调栈
{% fold 展开代码 %}

#include
#include
#include
#include

using namespace std;

typedef long long LL;
typedef pair<int, int> pii;
#define mp(x, y) make_pair(x, y)

const int N = 100005;

int n, h[N], len[N];
LL ans;
stack sta;

int main(){
    while(scanf("%d", &n) && n){
        ans = 0;
        while(!sta.empty()) sta.pop();
        for(int i = 1; i <= n; i++){
            scanf("%d", &h[i]);
            int sumL = 0;
            while(!sta.empty() && h[i] <= sta.top().first){
                sumL += sta.top().second;
                sta.pop();
            }
            len[i] = sumL;
            sta.push(mp(h[i], sumL + 1));
        }
        while(!sta.empty()) sta.pop();
        for(int i = n; i >= 1; i--){
            int sumL = 0;
            while(!sta.empty() && h[i] <= sta.top().first){
                sumL += sta.top().second;
                sta.pop();
            }
            len[i] += sumL;
            sta.push(mp(h[i], sumL + 1));
        }
        for(int i = 1; i <= n; i++){
            len[i]++;
            ans = max(ans, 1ll * len[i] * h[i]);
        }
        printf("%lld\n", ans);
    }
    return 0;
}

{% endfold %}

hdu2830

枚举底边,按高度排个序,就变成了上一题。
有趣的是,由于排了序,我们不用写单调栈,运用它的思想即可。
{% fold 展开代码 %}

#include
#include
#include

using namespace std;

const int N = 1005;

int n, m, g[N][N], H[N][N], h[N], len[N], ans;
char c[N][N];

int main(){
    while(scanf("%d%d", &n, &m) != EOF){
        ans = 0;
        for(int i = 1; i <= n; i++){
            scanf("%s", c[i]+1);
            for(int j = 1; j <= m; j++){
                if(c[i][j] == '0')  H[i][j] = 0;
                else    H[i][j] = H[i-1][j] + 1;
            }
        }
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= m; j++)
                h[j] = H[i][j];
            sort(h+1, h+m+1);
            for(int j = 1; j <= m; j++){
                if(h[j] == h[j-1])  continue;
                else    ans = max(ans, h[j] * (m - j + 1));
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}

{% endfold %}

hdu1505 / poj1964

悬线法
{% fold 展开代码 %}

#include
#include

using namespace std;

const int N = 1005;

int T, n, m, ans, g[N][N], l[N][N], u[N][N], r[N][N];
char ch[10];

int main(){
    scanf("%d", &T);
    while(T--){
        ans = 0;
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= m; j++){
                scanf("%s", ch);
                g[i][j] = ch[0] == 'F' ? 1 : 0;
                u[i][j] = l[i][j] = r[i][j] = 0;
                if(g[i][j] == 1)
                    u[i][j] = i, l[i][j] = r[i][j] = j;
            }
        }
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= m; j++){
                if(g[i][j] == 0)    continue;
                if(i != 1)    u[i][j] = g[i-1][j] == 1 ? u[i-1][j] : i;
                if(j != 1)    l[i][j] = g[i][j-1] == 1 ? l[i][j-1] : j;
            }
            for(int j = m; j >= 1; j--){
                if(g[i][j] == 0)    continue;
                if(j != m)    r[i][j] = g[i][j+1] == 1 ? r[i][j+1] : j;
            }
        }
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= m; j++){
                if(g[i][j] == 0)    continue;
                if(g[i][j] == 1 && g[i-1][j] == 1){
                    l[i][j] = max(l[i][j], l[i-1][j]);
                    r[i][j] = min(r[i][j], r[i-1][j]);
                }
                ans = max(ans, (r[i][j] - l[i][j] + 1) * (i - u[i][j] + 1));
            }
        }
        printf("%d\n", ans * 3);
    }
    return 0;
}

{% endfold %}

poj3494

悬线法
{% fold 展开代码 %}

#include
#include

using namespace std;

const int N = 2005;

int n, m, l[N][N], r[N][N], u[N][N], g[N][N], ans;

int main(){
    while(scanf("%d%d", &n, &m) != EOF){
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= m; j++)
                scanf("%d", &g[i][j]);
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= m; j++)
                u[i][j] = l[i][j] = r[i][j] = 0;
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= m; j++){
                if(g[i][j] == 0)    continue;
                u[i][j] = g[i-1][j] == 1 ? u[i-1][j] : i;
                l[i][j] = g[i][j-1] == 1 ? l[i][j-1] : j;
            }
            for(int j = m; j >= 1; j--){
                if(g[i][j] == 0)    continue;
                r[i][j] = g[i][j+1] == 1 ? r[i][j+1] : j;
            }
        }
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= m; j++){
                if(g[i][j] == 0)    continue;
                if(g[i-1][j] == 1){
                    l[i][j] = max(l[i][j], l[i-1][j]);
                    r[i][j] = min(r[i][j], r[i-1][j]);
                }
                ans = max(ans, (r[i][j] - l[i][j] + 1) * (i - u[i][j] + 1));
            }
        }
        printf("%d\n", ans);
        ans = 0;
    }
    return 0;
}

{% endfold %}

hdu2870

最大子矩形一定要么全是 a a ,要么全是 b b ,要么全是 c c
假设最大子矩形全是 a a ,那么把所有能变成 a a 的全变成 a a 一定比不变某些字母更好,以此求一次答案;同理,再全变成 b b 求一次答案,再全变成 c c 求一次答案。
{% fold 展开代码 %}

#include
#include

using namespace std;

const int N = 1005;

int n, m, l[N][N], r[N][N], u[N][N], g[N][N], ans;
char c[N][N];

inline void work(char ch){
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            if(ch == 'a' && (c[i][j] == 'a' || c[i][j] == 'w' || c[i][j] == 'y' || c[i][j] == 'z')) g[i][j] = 1;
            else if(ch == 'b' && (c[i][j] == 'b' || c[i][j] == 'w' || c[i][j] == 'x' || c[i][j] == 'z'))    g[i][j] = 1;
            else if(ch == 'c' && (c[i][j] == 'c' || c[i][j] == 'x' || c[i][j] == 'y' || c[i][j] == 'z'))    g[i][j] = 1;
            else    g[i][j] = 0;
            u[i][j] = i, l[i][j] = r[i][j] = j;
        }
    }
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            if(g[i][j] == 0)    continue;
            if(i > 1)   u[i][j] = g[i-1][j] == 1 ? u[i-1][j] : i;
            if(j > 1)   l[i][j] = g[i][j-1] == 1 ? l[i][j-1] : j;
        }
        for(int j = m; j >= 1; j--){
            if(g[i][j] == 0)    continue;
            if(j < m)   r[i][j] = g[i][j+1] == 1 ? r[i][j+1] : j;
        }
    }
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            if(g[i][j] == 0)    continue;
            if(g[i-1][j] == 1){
                l[i][j] = max(l[i][j], l[i-1][j]);
                r[i][j] = min(r[i][j], r[i-1][j]);
            }
            ans = max(ans, (r[i][j] - l[i][j] + 1) * (i - u[i][j] + 1));
        }
    }
}

int main(){
    while(scanf("%d%d", &n, &m) != EOF){
        for(int i = 1; i <= n; i++)
            scanf("%s", c[i] + 1);
        work('a');
        work('b');
        work('c');
        printf("%d\n", ans);
        ans = 0;
    }
    return 0;
}

{% endfold %}

[ZJOI2007]棋盘制作

悬线法
{% fold 展开代码 %}

#include
#include
#include

using namespace std;

const int N = 2005;
int n, m, g[N][N], l[N][N], r[N][N], u[N][N], ans1, ans2;

int main(){
    memset(g, -1, sizeof g);
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            scanf("%d", &g[i][j]);
            u[i][j] = i, l[i][j] = r[i][j] = j;
        }
    }
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            if(i != 1)  u[i][j] = g[i][j] != g[i-1][j] ? u[i-1][j] : i;
            if(j != 1)  l[i][j] = g[i][j] != g[i][j-1] ? l[i][j-1] : j;
        }
        for(int j = m; j >= 1; j--)
            if(j != m)  r[i][j] = g[i][j] != g[i][j+1] ? r[i][j+1] : j;
    }
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            if(i != 1 && g[i][j] != g[i-1][j]){
                l[i][j] = max(l[i][j], l[i-1][j]);
                r[i][j] = min(r[i][j], r[i-1][j]);
            }
            int t1 = r[i][j] - l[i][j] + 1;
            int t2 = i - u[i][j] + 1;
            ans1 = max(ans1, min(t1, t2) * min(t1, t2));
            ans2 = max(ans2, t1 * t2);
        }
    }
    printf("%d\n%d\n", ans1, ans2);
    return 0;
}

{% endfold %}

奶牛浴场

洛谷上的题解 很详尽
{% fold 展开代码 %}

#include

using namespace std;

const int N = 5010;

int L, W, n, x, y, ans;

struct Point{
    int x, y;
}p[N];
bool cmp(Point a, Point b){
    if(a.y == b.y)  return a.x < b.x;
    return a.y < b.y;
}
bool cmp1(Point a, Point b){
    return a.x < b.x;
}

int main(){
    scanf("%d%d%d", &L, &W, &n);
    for(int i = 1; i <= n; i++)
        scanf("%d%d", &p[i].x, &p[i].y);
    p[++n] = (Point){0, 0};
    p[++n] = (Point){0, W};
    p[++n] = (Point){L, 0};
    p[++n] = (Point){L, W};
    sort(p+1, p+n+1, cmp1);
    for(int i = 2; i <= n; i++)
        ans = max(ans, (p[i].x - p[i-1].x) * W);
    sort(p+1, p+n+1, cmp);
    for(int i = 1; i <= n; i++){
        int u = 0, d = L;
        for(int j = i + 1; j <= n; j++){
            if(p[j].y == p[i].y)    continue;
            ans = max(ans, (p[j].y - p[i].y) * (d - u));
            if(p[j].x == p[i].x)    u = d = p[j].x;
            else if(p[j].x > p[i].x)    d = min(d, p[j].x);
            else if(p[j].x < p[i].x)    u = max(u, p[j].x);
        }
        ans = max(ans, (W - p[i].y) * (d - u));
    }
    for(int i = n; i >= 1; i--){
        int u = 0, d = L;
        for(int j = i - 1; j >= 1; j--){
            if(p[j].y == p[i].y)    continue;
            ans = max(ans, (p[i].y - p[j].y) * (d - u));
            if(p[j].x == p[i].x)    u = d = p[j].x;
            else if(p[j].x > p[i].x)    d = min(d, p[j].x);
            else if(p[j].x < p[i].x)    u = max(u, p[j].x);
        }
        ans = max(ans, p[i].y * (d - u));
    }
    printf("%d\n", ans);
    return 0;
}

{% endfold %}

你可能感兴趣的:(最大子矩形问题学习笔记)