yolo.h5文件问题的解决 - 吴恩达深度学习:目标检测之YOLO算法

在吴恩达深度学习系列视频:卷积神经网络第三周作业中,加载预训练模型时:

yolo_model = load_model("model_data/yolo.h5")

你会遇到yolo.h5文件找不到的情况,而当你去网上下载了一个yolo.h5文件时,可能会遇到unknown opcode等其他错误。

下面让我们来自己生成一个全新的yolo.h5文件。

下载预训练的权重:

Linux

wget http://pjreddie.com/media/files/yolo.weights

Window

http://pjreddie.com/media/files/yolo.weights

点击上面链接之后自动下载

下载配置文件:

https://github.com/pjreddie/darknet/tree/master/cfg

找到yolov2.cfg下载下来,并改名成yolo.cfg(调用该文件时,使用的名字是这个)。

下载需要脚本

https://github.com/allanzelener/YAD2K
点击
在这里插入图片描述
下载zip。

当然你使用git命令下载下来也可以。

准备工作

复制或剪切yolo.weightsyolo.cfg以及yad2k.py三个文件,以及一个文件夹yad2k到我的文档(桌面上那个我的文档,它是命令行执行的默认路径,这样你就不需要cd进下载目录执行操作了)。

注意文件夹吴恩达提供的作业里已经有yad2k文件夹,所有windows会提示你是否替换原有文件,点击替换。

打开Anaconda Prompt

(tensorflow) C:\Users\wangh>python yad2k.py yolo.cfg yolo.weights model_data/yolo.h5

注意,我是在tensorflow虚拟环境下进行的,你在什么环境下运行都可以,它本质上是调用yad2k.py使用yolo.weightsyolo.cfg去生成yolo.py,需要有keras包。

结果

(tensorflow) C:\Users\wangh>python yad2k.py yolo.cfg yolo.weights model_data/yolo.h5
Using TensorFlow backend.
Loading weights.
Weights Header:  [       0        1        0 32013312]
Parsing Darknet config.
Creating Keras model.
Parsing section net_0
Parsing section convolutional_0
conv2d bn leaky (3, 3, 3, 32)
2018-12-26 14:39:43.768410: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
Parsing section maxpool_0
Parsing section convolutional_1
conv2d bn leaky (3, 3, 32, 64)
Parsing section maxpool_1
Parsing section convolutional_2
conv2d bn leaky (3, 3, 64, 128)
Parsing section convolutional_3
conv2d bn leaky (1, 1, 128, 64)
Parsing section convolutional_4
conv2d bn leaky (3, 3, 64, 128)
Parsing section maxpool_2
Parsing section convolutional_5
conv2d bn leaky (3, 3, 128, 256)
Parsing section convolutional_6
conv2d bn leaky (1, 1, 256, 128)
Parsing section convolutional_7
conv2d bn leaky (3, 3, 128, 256)
Parsing section maxpool_3
Parsing section convolutional_8
conv2d bn leaky (3, 3, 256, 512)
Parsing section convolutional_9
conv2d bn leaky (1, 1, 512, 256)
Parsing section convolutional_10
conv2d bn leaky (3, 3, 256, 512)
Parsing section convolutional_11
conv2d bn leaky (1, 1, 512, 256)
Parsing section convolutional_12
conv2d bn leaky (3, 3, 256, 512)
Parsing section maxpool_4
Parsing section convolutional_13
conv2d bn leaky (3, 3, 512, 1024)
Parsing section convolutional_14
conv2d bn leaky (1, 1, 1024, 512)
Parsing section convolutional_15
conv2d bn leaky (3, 3, 512, 1024)
Parsing section convolutional_16
conv2d bn leaky (1, 1, 1024, 512)
Parsing section convolutional_17
conv2d bn leaky (3, 3, 512, 1024)
Parsing section convolutional_18
conv2d bn leaky (3, 3, 1024, 1024)
Parsing section convolutional_19
conv2d bn leaky (3, 3, 1024, 1024)
Parsing section route_0
Parsing section convolutional_20
conv2d bn leaky (1, 1, 512, 64)
Parsing section reorg_0
Parsing section route_1
Concatenating route layers: [<tf.Tensor 'space_to_depth_x2/SpaceToDepth:0' shape=(?, 19, 19, 256) dtype=float32>, <tf.Tensor 'leaky_re_lu_20/LeakyRelu:0' shape=(?, 19, 19, 1024) dtype=float32>]
Parsing section convolutional_21
conv2d bn leaky (3, 3, 1280, 1024)
Parsing section convolutional_22
conv2d    linear (1, 1, 1024, 425)
Parsing section region_0
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to
==================================================================================================
input_1 (InputLayer)            (None, 608, 608, 3)  0
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 608, 608, 32) 864         input_1[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 608, 608, 32) 128         conv2d_1[0][0]
__________________________________________________________________________________________________
leaky_re_lu_1 (LeakyReLU)       (None, 608, 608, 32) 0           batch_normalization_1[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D)  (None, 304, 304, 32) 0           leaky_re_lu_1[0][0]
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 304, 304, 64) 18432       max_pooling2d_1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 304, 304, 64) 256         conv2d_2[0][0]
__________________________________________________________________________________________________
leaky_re_lu_2 (LeakyReLU)       (None, 304, 304, 64) 0           batch_normalization_2[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D)  (None, 152, 152, 64) 0           leaky_re_lu_2[0][0]
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 152, 152, 128 73728       max_pooling2d_2[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 152, 152, 128 512         conv2d_3[0][0]
__________________________________________________________________________________________________
leaky_re_lu_3 (LeakyReLU)       (None, 152, 152, 128 0           batch_normalization_3[0][0]
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 152, 152, 64) 8192        leaky_re_lu_3[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 152, 152, 64) 256         conv2d_4[0][0]
__________________________________________________________________________________________________
leaky_re_lu_4 (LeakyReLU)       (None, 152, 152, 64) 0           batch_normalization_4[0][0]
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 152, 152, 128 73728       leaky_re_lu_4[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 152, 152, 128 512         conv2d_5[0][0]
__________________________________________________________________________________________________
leaky_re_lu_5 (LeakyReLU)       (None, 152, 152, 128 0           batch_normalization_5[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D)  (None, 76, 76, 128)  0           leaky_re_lu_5[0][0]
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 76, 76, 256)  294912      max_pooling2d_3[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 76, 76, 256)  1024        conv2d_6[0][0]
__________________________________________________________________________________________________
leaky_re_lu_6 (LeakyReLU)       (None, 76, 76, 256)  0           batch_normalization_6[0][0]
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 76, 76, 128)  32768       leaky_re_lu_6[0][0]
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 76, 76, 128)  512         conv2d_7[0][0]
__________________________________________________________________________________________________
leaky_re_lu_7 (LeakyReLU)       (None, 76, 76, 128)  0           batch_normalization_7[0][0]
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 76, 76, 256)  294912      leaky_re_lu_7[0][0]
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 76, 76, 256)  1024        conv2d_8[0][0]
__________________________________________________________________________________________________
leaky_re_lu_8 (LeakyReLU)       (None, 76, 76, 256)  0           batch_normalization_8[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D)  (None, 38, 38, 256)  0           leaky_re_lu_8[0][0]
__________________________________________________________________________________________________
conv2d_9 (Conv2D)               (None, 38, 38, 512)  1179648     max_pooling2d_4[0][0]
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 38, 38, 512)  2048        conv2d_9[0][0]
__________________________________________________________________________________________________
leaky_re_lu_9 (LeakyReLU)       (None, 38, 38, 512)  0           batch_normalization_9[0][0]
__________________________________________________________________________________________________
conv2d_10 (Conv2D)              (None, 38, 38, 256)  131072      leaky_re_lu_9[0][0]
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 38, 38, 256)  1024        conv2d_10[0][0]
__________________________________________________________________________________________________
leaky_re_lu_10 (LeakyReLU)      (None, 38, 38, 256)  0           batch_normalization_10[0][0]
__________________________________________________________________________________________________
conv2d_11 (Conv2D)              (None, 38, 38, 512)  1179648     leaky_re_lu_10[0][0]
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 38, 38, 512)  2048        conv2d_11[0][0]
__________________________________________________________________________________________________
leaky_re_lu_11 (LeakyReLU)      (None, 38, 38, 512)  0           batch_normalization_11[0][0]
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 38, 38, 256)  131072      leaky_re_lu_11[0][0]
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 38, 38, 256)  1024        conv2d_12[0][0]
__________________________________________________________________________________________________
leaky_re_lu_12 (LeakyReLU)      (None, 38, 38, 256)  0           batch_normalization_12[0][0]
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 38, 38, 512)  1179648     leaky_re_lu_12[0][0]
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 38, 38, 512)  2048        conv2d_13[0][0]
__________________________________________________________________________________________________
leaky_re_lu_13 (LeakyReLU)      (None, 38, 38, 512)  0           batch_normalization_13[0][0]
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D)  (None, 19, 19, 512)  0           leaky_re_lu_13[0][0]
__________________________________________________________________________________________________
conv2d_14 (Conv2D)              (None, 19, 19, 1024) 4718592     max_pooling2d_5[0][0]
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 19, 19, 1024) 4096        conv2d_14[0][0]
__________________________________________________________________________________________________
leaky_re_lu_14 (LeakyReLU)      (None, 19, 19, 1024) 0           batch_normalization_14[0][0]
__________________________________________________________________________________________________
conv2d_15 (Conv2D)              (None, 19, 19, 512)  524288      leaky_re_lu_14[0][0]
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 19, 19, 512)  2048        conv2d_15[0][0]
__________________________________________________________________________________________________
leaky_re_lu_15 (LeakyReLU)      (None, 19, 19, 512)  0           batch_normalization_15[0][0]
__________________________________________________________________________________________________
conv2d_16 (Conv2D)              (None, 19, 19, 1024) 4718592     leaky_re_lu_15[0][0]
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 19, 19, 1024) 4096        conv2d_16[0][0]
__________________________________________________________________________________________________
leaky_re_lu_16 (LeakyReLU)      (None, 19, 19, 1024) 0           batch_normalization_16[0][0]
__________________________________________________________________________________________________
conv2d_17 (Conv2D)              (None, 19, 19, 512)  524288      leaky_re_lu_16[0][0]
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 19, 19, 512)  2048        conv2d_17[0][0]
__________________________________________________________________________________________________
leaky_re_lu_17 (LeakyReLU)      (None, 19, 19, 512)  0           batch_normalization_17[0][0]
__________________________________________________________________________________________________
conv2d_18 (Conv2D)              (None, 19, 19, 1024) 4718592     leaky_re_lu_17[0][0]
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 19, 19, 1024) 4096        conv2d_18[0][0]
__________________________________________________________________________________________________
leaky_re_lu_18 (LeakyReLU)      (None, 19, 19, 1024) 0           batch_normalization_18[0][0]
__________________________________________________________________________________________________
conv2d_19 (Conv2D)              (None, 19, 19, 1024) 9437184     leaky_re_lu_18[0][0]
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 19, 19, 1024) 4096        conv2d_19[0][0]
__________________________________________________________________________________________________
conv2d_21 (Conv2D)              (None, 38, 38, 64)   32768       leaky_re_lu_13[0][0]
__________________________________________________________________________________________________
leaky_re_lu_19 (LeakyReLU)      (None, 19, 19, 1024) 0           batch_normalization_19[0][0]
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 38, 38, 64)   256         conv2d_21[0][0]
__________________________________________________________________________________________________
conv2d_20 (Conv2D)              (None, 19, 19, 1024) 9437184     leaky_re_lu_19[0][0]
__________________________________________________________________________________________________
leaky_re_lu_21 (LeakyReLU)      (None, 38, 38, 64)   0           batch_normalization_21[0][0]
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 19, 19, 1024) 4096        conv2d_20[0][0]
__________________________________________________________________________________________________
space_to_depth_x2 (Lambda)      (None, 19, 19, 256)  0           leaky_re_lu_21[0][0]
__________________________________________________________________________________________________
leaky_re_lu_20 (LeakyReLU)      (None, 19, 19, 1024) 0           batch_normalization_20[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 19, 19, 1280) 0           space_to_depth_x2[0][0]
                                                                 leaky_re_lu_20[0][0]
__________________________________________________________________________________________________
conv2d_22 (Conv2D)              (None, 19, 19, 1024) 11796480    concatenate_1[0][0]
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 19, 19, 1024) 4096        conv2d_22[0][0]
__________________________________________________________________________________________________
leaky_re_lu_22 (LeakyReLU)      (None, 19, 19, 1024) 0           batch_normalization_22[0][0]
__________________________________________________________________________________________________
conv2d_23 (Conv2D)              (None, 19, 19, 425)  435625      leaky_re_lu_22[0][0]
==================================================================================================
Total params: 50,983,561
Trainable params: 50,962,889
Non-trainable params: 20,672
__________________________________________________________________________________________________
None
Saved Keras model to model_data/yolo.h5
Read 50983561 of 50983561.0 from Darknet weights.

然后model_data文件下多出了一个文件yolo.h5,就可以正常使用了。
yolo.h5文件问题的解决 - 吴恩达深度学习:目标检测之YOLO算法_第1张图片

你可能感兴趣的:(深度学习与机器学习)