- 训练大模型LLM选择哪种开发语言最好
大0马浓
人工智能训练python
训练大型语言模型(LLM)时,选择合适的编程语言主要取决于效率、生态支持、开发便利性以及特定需求(如性能优化或硬件适配)。以下是常见语言的分析和推荐:---1.Python(首选语言)优势:-生态系统丰富:主流深度学习框架(PyTorch、TensorFlow、JAX)均以Python为主要接口,提供完整的工具链(数据处理、模型训练、评估部署)。-开发效率高:语法简洁,适合快速实验和原型开发,社区
- 动手深度学习笔记(二十九)5.5. 读写文件
落花逐流水
pytorch实践pytorchpytorch
动手深度学习笔记(二十九)5.5.读写文件5.深度学习计算5.5.读写文件5.5.1.加载和保存张量5.5.2.加载和保存模型参数5.5.3.小结5.5.4.练习5.深度学习计算5.5.读写文件到目前为止,我们讨论了如何处理数据,以及如何构建、训练和测试深度学习模型。然而,有时我们希望保存训练的模型,以备将来在各种环境中使用(比如在部署中进行预测)。此外,当运行一个耗时较长的训练过程时,最佳的做法
- 【深度学习】从全连接层到卷积
熙曦Sakura
深度学习深度学习人工智能
从全连接层到卷积我们之前讨论的多层感知机十分适合处理表格数据,其中行对应样本,列对应特征。对于表格数据,我们寻找的模式可能涉及特征之间的交互,但是我们不能预先假设任何与特征交互相关的先验结构。此时,多层感知机可能是最好的选择,然而对于高维感知数据,这种缺少结构的网络可能会变得不实用。例如,在之前猫狗分类的例子中:假设我们有一个足够充分的照片数据集,数据集中是拥有标注的照片,每张照片具有百万级像素,
- 【深度学习】微积分
熙曦Sakura
深度学习深度学习人工智能
微积分在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。为了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。如图2.4.1所示,内接多边形的等长边越多,就越接近圆。这个过程也被称为逼近法(methodofexhaustion)。事实上,逼近法就是积分(integralcalculus)的起源。2000多年后,微积分的另一支,微分(di
- 【C++】Operator Overloading
bryant_meng
C/C++c++开发语言运算符重载重载规则友元函数
《C++程序设计基础教程》——刘厚泉,李政伟,二零一三年九月版,学习笔记文章目录1、什么是运算符重载2、运算符重载规则3、运算符重载的实现形式3.1、重载为类的成员函数3.2、重载为友元函数4、应用实例更多有趣的代码示例,可参考【Programming】1、什么是运算符重载在C++中,运算符重载是一种允许程序员为用户定义的类型(如类和结构体)指定如何使用标准运算符(如+,-,*,/,==,>等)的
- Chebykan wx 文章阅读
やっはろ
深度学习
文献筛选[1]神经网络:全面基础[2]通过sigmoid函数的超层叠近似[3]多层前馈网络是通用近似器[5]注意力是你所需要的[6]深度残差学习用于图像识别[7]视觉化神经网络的损失景观[8]牙齿模具点云补全通过数据增强和混合RL-GAN[9]强化学习:一项调查[10]使用PySR和SymbolicRegression.jl的科学可解释机器学习[11]Z.Liu,Y.Wang,S.Vaidya,F
- LeNet-5卷积神经网络详解
LChuck
深度学习人工智能神经网络深度学习数据结构计算机视觉AIGC
LeNet-5卷积神经网络详解1.历史背景LeNet-5是由YannLeCun等人在1998年提出的一种卷积神经网络架构,是深度学习领域的一个重要里程碑。这个网络最初是为了解决手写数字识别问题而设计的,在当时取得了突破性的成果。它的成功不仅证明了卷积神经网络在计算机视觉任务中的有效性,更为后来深度学习的发展奠定了重要基础。图1:LeNet-5网络结构示意图2.网络结构LeNet-5的结构非常优雅且
- 基于yolov11的瓶盖缺陷检测系统python源码+pytorch模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLOpytorch人工智能
【算法介绍】基于YOLOv11的瓶盖缺陷检测系统在现代制造业中,瓶盖的质量直接影响到产品的封装效果和消费者的使用体验。因此,对瓶盖进行快速、准确的缺陷检测至关重要。基于YOLOv11(YouOnlyLookOnceversion11)的瓶盖缺陷检测系统应运而生,为瓶盖质量监控提供了一种高效、智能的解决方案。该系统采用YOLOv11作为核心检测算法,这一算法融合了先进的深度学习技术和创新的网络架构,
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- 2024-05-21 问AI: 介绍一下大语言模型的推理过程。
BigSharkTech 必杀技
用AI来理解AI人工智能语言模型自然语言处理
文心一言大语言模型的推理过程是一个复杂而精细的序列,它结合了深度学习和自然语言处理的技术,旨在理解和生成人类可以理解的自然语言文本。以下是该过程的主要步骤:输入文本的解析:当用户输入一段文本时,大语言模型首先会通过一个称为分词器的工具(tokenizer)对输入文本进行解析。分词器会将文本分解为一系列的单词或子词(tokens),并将它们转换为数字形式的序列。这些数字通常是单词在模型词典(voca
- 基于pytorch的神经病网络搭建学习
停走的风
pytorch学习学习pytorch人工智能
1.pycharm中code方法的使用1.1父类重写技巧操作:在需要重写的方法上右键,选择code-->Generate>OverrideMethods。作用:自动生成重写父类或接口的方法2.简单神经网络importtorchfromtorchimportnnclassyu(nn.Module):def__init__(self,*args,**kwargs)->None:super().__in
- 如何增强机器学习基础,提升大模型面试通过概率
weixin_40941102
机器学习面试人工智能
我的好朋友没有通过面试所以我给我的好朋友准备了这一篇学习路线随着大模型(如Transformer、GPT-4、LLaMA等)在自然语言处理(NLP)、计算机视觉(CV)和多模态任务中的广泛应用,AI行业的招聘竞争愈发激烈。面试官不仅要求候选人熟练使用深度学习框架(如PyTorch、TensorFlow),还希望他们具备扎实的机器学习理论基础、算法实现能力和实际问题解决经验。本文将从机器学习基础入手
- Bottleneck、CSP、DP结构详细介绍
CV工程师小朱
深度学习笔记人工智能深度学习CSP深度可分离残差网络
文章目录前言一、BottleneckDarknetBottleneck二、CSPCSP思想pp-picodet中的CSPLayerDP卷积前言本篇文章详细介绍了三种神经网络中常见的结构,bottleneck、CSP、DP,并附上了代码加深理解。一、BottleneckBottleneck出现在ResNet50/101/152这种深层网络中,基本思想就是先用1x1减少通道数再进行卷积最后再通过1x1
- 算力服务器主要是指什么?
wanhengidc
服务器运维
随着科技的快速发展,人工智能也逐渐兴起,算力服务器也受到了各个企业的重视,本文就来为大家介绍一下算力服务器主要都是指什么吧!算力服务器对于人工智能领域来说,在深度学习模型的训练和推理过程中扮演着非常重要的角色,算力服务器可以执行大规模的矩阵计算,加速神经网络的训练和推理过程,帮助企业使得模型训练的时间大幅度缩短。算力服务器通常会配备高速网络接口,以此来实现快速的数据信息传输速度和通信速度,同时高速
- 大模型问答机器人如何实现自然交互
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
大模型问答机器人如何实现自然交互关键词:大模型问答机器人,自然语言处理(NLP),深度学习,深度对话,多轮对话,意图理解,信息检索,逻辑推理1.背景介绍1.1问题由来近年来,随着人工智能技术的飞速发展,自然语言处理(NLP)领域取得了巨大的突破。特别是深度学习模型在自然语言理解和生成方面的卓越表现,使得基于深度学习的大模型问答机器人(LargeLanguageModel-basedChatbots
- 机器学习模型-从线性回归到神经网络
Earth explosion
机器学习线性回归神经网络
在当今的数据驱动世界中,机器学习模型是许多应用程序的核心。无论是推荐系统、图像识别,还是自动驾驶汽车,机器学习技术都在背后发挥着重要作用。在这篇文章中,我们将探索几种基础的机器学习模型,并了解它们的基本原理和应用场景。1.线性回归基本原理线性回归是最简单的机器学习模型之一。它旨在找到一个最佳拟合线来预测目标变量(通常是连续值)。线性回归假设输入变量和输出变量之间存在线性关系,其数学表达式为:[y=
- 神经网络探秘:原理、架构与实战案例
二川bro
智能AI神经网络人工智能深度学习
神经网络探秘:原理、架构与实战案例前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。https://www.captainbed.cn/ccc在人工智能的浪潮中,神经网络作为核心驱动力之一,正引领着技术革新与产业变革。本文旨在深入剖析神经网络的原理、常见架构,并通过一个实际的代码案例,带领读者亲手实践神经网络的构建与训练过程。无论你是机器学习初学者,还
- 用物理信息神经网络(PINN)解决实际优化问题:全面解析与实践
青橘MATLAB学习
深度学习网络设计人工智能深度学习物理信息神经网络强化学习
摘要本文系统介绍了物理信息神经网络(PINN)在解决实际优化问题中的创新应用。通过将物理定律与神经网络深度融合,PINN在摆的倒立控制、最短时间路径规划及航天器借力飞行轨道设计等复杂任务中展现出显著优势。实验表明,PINN相比传统数值方法及强化学习(RL)/遗传算法(GA),在收敛速度、解的稳定性及物理保真度上均实现突破性提升。关键词:物理信息神经网络;优化任务;深度学习;强化学习;航天器轨道一、
- 为什么VAE效果不好,但VAE+diffusion效果就好了?
AndrewHZ
深度学习新浪潮算法计算机视觉深度学习扩散模型VAE生成式模型技术分析
1.什么是VAE?VAE(VariationalAutoencoder,变分自编码器)是一种基于概率生成模型的深度学习框架,主要用于数据生成和潜在空间建模。它结合了自编码器(Autoencoder)的结构和变分推断(VariationalInference)的思想,能够从数据中学习有意义的潜在表示,并生成与训练数据相似的新样本。VAE的核心思想编码-解码结构类似传统自编码器,VAE包含两个部分:编
- 【笔试面试】秒懂深度学习模型小型化:蒸馏法、剪枝…
聊北辰同学
轻量级神经网络神经网络深度学习机器学习数据挖掘
蒸馏:主要思想是,通过大模型指导小模型学习。剪枝:网络剪枝的主要思想就是将权重矩阵中相对“不重要”的权值剔除,然后再重新finetune网络进行微调。紧凑模型设计:MobileNet的深度可分离卷积shufflenet的逐点群卷积(pointwisegroupconvolution)和通道混洗(channelshuffle),前者通过分组卷积降低计算量,后者促进信息在不同组之间流转
- Transformer 的原理是什么?
玩人工智能的辣条哥
人工智能transformer深度学习人工智能
环境:Transformer问题描述:Transformer的原理是什么?通俗易懂一点。解决方案:Transformer是一种基于注意力机制(AttentionMechanism)的深度学习架构,最初由Vaswani等人在2017年的论文《AttentionisAllYouNeed》中提出。它在自然语言处理(NLP)领域取得了巨大成功,并逐渐扩展到计算机视觉(CV)和其他领域。Transforme
- 计算机视觉深度学习入门(4)
yyc_audio
计算机视觉人工智能计算机视觉深度学习神经网络
在小型数据集上从头开始训练一个卷积神经网络利用少量数据来训练图像分类模型,这是一种很常见的情况。如果你从事与计算机视觉相关的职业,那么很可能会在实践中遇到这种情况。“少量”样本既可能是几百张图片,也可能是上万张图片。我们来看一个实例——猫狗图片分类,数据集包含5000张猫和狗的图片(2500张猫的图片,2500张狗的图片)。我们将2000张图片用于训练,1000张用于验证,2000张用于测试。将介
- Python训练的机器学习模型【保存】 和【加载】的方法?
福葫芦
python机器学习开发语言
一.为什么要保存训练好的模型由于传统训练机器学习模型,需要耗费大量的人力和资源。因此,将训练好的模型保存成为一件特别重要的事情。现有的机器学习模型保存方法有三种,分别为使用pickle(通用)、joblib(大型模型)、HDF5(存储深度学习模型的权重)二.Python保存模型的三种方式1.方式一:pickle模块【通用】pickle是Python标准库中的一个模块,它可以将Python对象序列化
- 深入解析模型蒸馏(Knowledge Distillation):原理、方法与优化策略
赵大仁
AI大语言模型人工智能人工智能深度学习神经网络机器学习自然语言处理
深入解析模型蒸馏(KnowledgeDistillation):原理、方法与优化策略1.引言随着深度学习模型规模的不断增长,训练和部署大模型的计算成本也越来越高。模型蒸馏(KnowledgeDistillation,KD)是一种广泛使用的模型压缩与优化技术,通过让一个小模型(StudentModel)学习大模型(TeacherModel)的知识,使其能够在保持高准确度的同时降低计算复杂度,从而提升
- LLM大模型技术实战4:热门开源LLMs对比和选型
大模型学习教程
机器学习开源人工智能职场和发展
一、大语言模型的特点和能力LLM(LargeLanguageModel,大型语言模型)是指那些规模庞大、参数数量众多的深度神经网络模型,用于理解和生成自然语言文本。在自然语言处理(NLP)领域有着广泛的应用,因其强大的语言理解和生成能力,能够处理各种复杂的文本任务。1.1主要特点架构特点LLM主要基于Transformer架构,Transformer通过自注意力机制(Self-Attention)
- 大模型面试--大模型(LLMs)基础面
TAICHIFEI
大模型面试语言模型人工智能
大模型(LLMs)基础面1.目前主流的开源模型体系有哪些?目前主流的开源大模型体系有以下几种:1.Transformer系列Transformer模型是深度学习中的一类重要模型,尤其在自然语言处理(NLP)领域。以下是一些主流的Transformer模型:GPT系列GPT-2和GPT-3:由OpenAI开发的生成式预训练变换器模型,用于生成高质量的文本。GPT-Neo和GPT-J:由Eleuthe
- 智能制造中的工业大数据分析实践
AI天才研究院
LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
智能制造中的工业大数据分析实践关键词:智能制造,工业大数据,数据分析,机器学习,深度学习,预测性维护,质量控制,生产优化文章目录智能制造中的工业大数据分析实践1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1工业大数据2.2工业大数据分析2.3智能制造3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.
- 情感识别(Emotion Recognition)
路野yue
人工智能自然语言处理
情感识别(EmotionRecognition)是通过分析人类的多模态数据(如面部表情、语音、文本等)来识别和理解其情感状态的技术。它在人机交互、心理健康、市场分析等领域有广泛应用。情感识别的主要方法1.基于面部表情的情感识别方法:通过分析面部特征(如眼睛、嘴巴、眉毛等)来识别情感。技术:传统方法:使用特征提取(如Gabor滤波器、LBP)和分类器(如SVM)。深度学习方法:使用卷积神经网络(CN
- 人工智能机器学习算法分类全解析
power-辰南
人工智能人工智能机器学习算法python
目录一、引言二、机器学习算法分类概述(一)基于学习方式的分类1.监督学习(SupervisedLearning)2.无监督学习(UnsupervisedLearning)3.强化学习(ReinforcementLearning)(二)基于任务类型的分类1.分类算法2.回归算法3.聚类算法4.降维算法5.生成算法(三)基于模型结构的分类1.线性模型2.非线性模型3.基于树的模型4.基于神经网络的模型
- 深度学习赋能中文情感分析:让机器读懂中国人的喜怒哀乐
芯作者
DD:日记深度学习机器学习人工智能
当你在深夜刷到一条"这奶茶真是绝绝子"的朋友圈,AI如何判断这是真心赞美还是阴阳怪气?当电商评论区出现"手机壳颜色很高级,就是物流太佛系",算法怎样量化其中的情感矛盾?在表情包与网络黑话齐飞的数字时代,中文情感分析技术正经历一场由深度学习驱动的认知革命。本文将深度解析这场让机器理解东方语境下复杂情感的科技进化史。一、中文情感分析:世界上最难破译的"情绪密码"1.中文的语义迷宫一词多义:"这操作66
- 多线程编程之存钱与取钱
周凡杨
javathread多线程存钱取钱
生活费问题是这样的:学生每月都需要生活费,家长一次预存一段时间的生活费,家长和学生使用统一的一个帐号,在学生每次取帐号中一部分钱,直到帐号中没钱时 通知家长存钱,而家长看到帐户还有钱则不存钱,直到帐户没钱时才存钱。
问题分析:首先问题中有三个实体,学生、家长、银行账户,所以设计程序时就要设计三个类。其中银行账户只有一个,学生和家长操作的是同一个银行账户,学生的行为是
- java中数组与List相互转换的方法
征客丶
JavaScriptjavajsonp
1.List转换成为数组。(这里的List是实体是ArrayList)
调用ArrayList的toArray方法。
toArray
public T[] toArray(T[] a)返回一个按照正确的顺序包含此列表中所有元素的数组;返回数组的运行时类型就是指定数组的运行时类型。如果列表能放入指定的数组,则返回放入此列表元素的数组。否则,将根据指定数组的运行时类型和此列表的大小分
- Shell 流程控制
daizj
流程控制if elsewhilecaseshell
Shell 流程控制
和Java、PHP等语言不一样,sh的流程控制不可为空,如(以下为PHP流程控制写法):
<?php
if(isset($_GET["q"])){
search(q);}else{// 不做任何事情}
在sh/bash里可不能这么写,如果else分支没有语句执行,就不要写这个else,就像这样 if else if
if 语句语
- Linux服务器新手操作之二
周凡杨
Linux 简单 操作
1.利用关键字搜寻Man Pages man -k keyword 其中-k 是选项,keyword是要搜寻的关键字 如果现在想使用whoami命令,但是只记住了前3个字符who,就可以使用 man -k who来搜寻关键字who的man命令 [haself@HA5-DZ26 ~]$ man -k
- socket聊天室之服务器搭建
朱辉辉33
socket
因为我们做的是聊天室,所以会有多个客户端,每个客户端我们用一个线程去实现,通过搭建一个服务器来实现从每个客户端来读取信息和发送信息。
我们先写客户端的线程。
public class ChatSocket extends Thread{
Socket socket;
public ChatSocket(Socket socket){
this.sock
- 利用finereport建设保险公司决策分析系统的思路和方法
老A不折腾
finereport金融保险分析系统报表系统项目开发
决策分析系统呈现的是数据页面,也就是俗称的报表,报表与报表间、数据与数据间都按照一定的逻辑设定,是业务人员查看、分析数据的平台,更是辅助领导们运营决策的平台。底层数据决定上层分析,所以建设决策分析系统一般包括数据层处理(数据仓库建设)。
项目背景介绍
通常,保险公司信息化程度很高,基本上都有业务处理系统(像集团业务处理系统、老业务处理系统、个人代理人系统等)、数据服务系统(通过
- 始终要页面在ifream的最顶层
林鹤霄
index.jsp中有ifream,但是session消失后要让login.jsp始终显示到ifream的最顶层。。。始终没搞定,后来反复琢磨之后,得到了解决办法,在这儿给大家分享下。。
index.jsp--->主要是加了颜色的那一句
<html>
<iframe name="top" ></iframe>
<ifram
- MySQL binlog恢复数据
aigo
mysql
1,先确保my.ini已经配置了binlog:
# binlog
log_bin = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.log
log_bin_index = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.index
log_error = D:/mysql-5.6.21-win
- OCX打成CBA包并实现自动安装与自动升级
alxw4616
ocxcab
近来手上有个项目,需要使用ocx控件
(ocx是什么?
http://baike.baidu.com/view/393671.htm)
在生产过程中我遇到了如下问题.
1. 如何让 ocx 自动安装?
a) 如何签名?
b) 如何打包?
c) 如何安装到指定目录?
2.
- Hashmap队列和PriorityQueue队列的应用
百合不是茶
Hashmap队列PriorityQueue队列
HashMap队列已经是学过了的,但是最近在用的时候不是很熟悉,刚刚重新看以一次,
HashMap是K,v键 ,值
put()添加元素
//下面试HashMap去掉重复的
package com.hashMapandPriorityQueue;
import java.util.H
- JDK1.5 returnvalue实例
bijian1013
javathreadjava多线程returnvalue
Callable接口:
返回结果并且可能抛出异常的任务。实现者定义了一个不带任何参数的叫做 call 的方法。
Callable 接口类似于 Runnable,两者都是为那些其实例可能被另一个线程执行的类设计的。但是 Runnable 不会返回结果,并且无法抛出经过检查的异常。
ExecutorService接口方
- angularjs指令中动态编译的方法(适用于有异步请求的情况) 内嵌指令无效
bijian1013
JavaScriptAngularJS
在directive的link中有一个$http请求,当请求完成后根据返回的值动态做element.append('......');这个操作,能显示没问题,可问题是我动态组的HTML里面有ng-click,发现显示出来的内容根本不执行ng-click绑定的方法!
- 【Java范型二】Java范型详解之extend限定范型参数的类型
bit1129
extend
在第一篇中,定义范型类时,使用如下的方式:
public class Generics<M, S, N> {
//M,S,N是范型参数
}
这种方式定义的范型类有两个基本的问题:
1. 范型参数定义的实例字段,如private M m = null;由于M的类型在运行时才能确定,那么我们在类的方法中,无法使用m,这跟定义pri
- 【HBase十三】HBase知识点总结
bit1129
hbase
1. 数据从MemStore flush到磁盘的触发条件有哪些?
a.显式调用flush,比如flush 'mytable'
b.MemStore中的数据容量超过flush的指定容量,hbase.hregion.memstore.flush.size,默认值是64M 2. Region的构成是怎么样?
1个Region由若干个Store组成
- 服务器被DDOS攻击防御的SHELL脚本
ronin47
mkdir /root/bin
vi /root/bin/dropip.sh
#!/bin/bash/bin/netstat -na|grep ESTABLISHED|awk ‘{print $5}’|awk -F:‘{print $1}’|sort|uniq -c|sort -rn|head -10|grep -v -E ’192.168|127.0′|awk ‘{if($2!=null&a
- java程序员生存手册-craps 游戏-一个简单的游戏
bylijinnan
java
import java.util.Random;
public class CrapsGame {
/**
*
*一个简单的赌*博游戏,游戏规则如下:
*玩家掷两个骰子,点数为1到6,如果第一次点数和为7或11,则玩家胜,
*如果点数和为2、3或12,则玩家输,
*如果和为其它点数,则记录第一次的点数和,然后继续掷骰,直至点数和等于第一次掷出的点
- TOMCAT启动提示NB: JAVA_HOME should point to a JDK not a JRE解决
开窍的石头
JAVA_HOME
当tomcat是解压的时候,用eclipse启动正常,点击startup.bat的时候启动报错;
报错如下:
The JAVA_HOME environment variable is not defined correctly
This environment variable is needed to run this program
NB: JAVA_HOME shou
- [操作系统内核]操作系统与互联网
comsci
操作系统
我首先申明:我这里所说的问题并不是针对哪个厂商的,仅仅是描述我对操作系统技术的一些看法
操作系统是一种与硬件层关系非常密切的系统软件,按理说,这种系统软件应该是由设计CPU和硬件板卡的厂商开发的,和软件公司没有直接的关系,也就是说,操作系统应该由做硬件的厂商来设计和开发
- 富文本框ckeditor_4.4.7 文本框的简单使用 支持IE11
cuityang
富文本框
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>知识库内容编辑</tit
- Property null not found
darrenzhu
datagridFlexAdvancedpropery null
When you got error message like "Property null not found ***", try to fix it by the following way:
1)if you are using AdvancedDatagrid, make sure you only update the data in the data prov
- MySQl数据库字符串替换函数使用
dcj3sjt126com
mysql函数替换
需求:需要将数据表中一个字段的值里面的所有的 . 替换成 _
原来的数据是 site.title site.keywords ....
替换后要为 site_title site_keywords
使用的SQL语句如下:
updat
- mac上终端起动MySQL的方法
dcj3sjt126com
mysqlmac
首先去官网下载: http://www.mysql.com/downloads/
我下载了5.6.11的dmg然后安装,安装完成之后..如果要用终端去玩SQL.那么一开始要输入很长的:/usr/local/mysql/bin/mysql
这不方便啊,好想像windows下的cmd里面一样输入mysql -uroot -p1这样...上网查了下..可以实现滴.
打开终端,输入:
1
- Gson使用一(Gson)
eksliang
jsongson
转载请出自出处:http://eksliang.iteye.com/blog/2175401 一.概述
从结构上看Json,所有的数据(data)最终都可以分解成三种类型:
第一种类型是标量(scalar),也就是一个单独的字符串(string)或数字(numbers),比如"ickes"这个字符串。
第二种类型是序列(sequence),又叫做数组(array)
- android点滴4
gundumw100
android
Android 47个小知识
http://www.open-open.com/lib/view/open1422676091314.html
Android实用代码七段(一)
http://www.cnblogs.com/over140/archive/2012/09/26/2611999.html
http://www.cnblogs.com/over140/arch
- JavaWeb之JSP基本语法
ihuning
javaweb
目录
JSP模版元素
JSP表达式
JSP脚本片断
EL表达式
JSP注释
特殊字符序列的转义处理
如何查找JSP页面中的错误
JSP模版元素
JSP页面中的静态HTML内容称之为JSP模版元素,在静态的HTML内容之中可以嵌套JSP
- App Extension编程指南(iOS8/OS X v10.10)中文版
啸笑天
ext
当iOS 8.0和OS X v10.10发布后,一个全新的概念出现在我们眼前,那就是应用扩展。顾名思义,应用扩展允许开发者扩展应用的自定义功能和内容,能够让用户在使用其他app时使用该项功能。你可以开发一个应用扩展来执行某些特定的任务,用户使用该扩展后就可以在多个上下文环境中执行该任务。比如说,你提供了一个能让用户把内容分
- SQLServer实现无限级树结构
macroli
oraclesqlSQL Server
表结构如下:
数据库id path titlesort 排序 1 0 首页 0 2 0,1 新闻 1 3 0,2 JAVA 2 4 0,3 JSP 3 5 0,2,3 业界动态 2 6 0,2,3 国内新闻 1
创建一个存储过程来实现,如果要在页面上使用可以设置一个返回变量将至传过去
create procedure test
as
begin
decla
- Css居中div,Css居中img,Css居中文本,Css垂直居中div
qiaolevip
众观千象学习永无止境每天进步一点点css
/**********Css居中Div**********/
div.center {
width: 100px;
margin: 0 auto;
}
/**********Css居中img**********/
img.center {
display: block;
margin-left: auto;
margin-right: auto;
}
- Oracle 常用操作(实用)
吃猫的鱼
oracle
SQL>select text from all_source where owner=user and name=upper('&plsql_name');
SQL>select * from user_ind_columns where index_name=upper('&index_name'); 将表记录恢复到指定时间段以前
- iOS中使用RSA对数据进行加密解密
witcheryne
iosrsaiPhoneobjective c
RSA算法是一种非对称加密算法,常被用于加密数据传输.如果配合上数字摘要算法, 也可以用于文件签名.
本文将讨论如何在iOS中使用RSA传输加密数据. 本文环境
mac os
openssl-1.0.1j, openssl需要使用1.x版本, 推荐使用[homebrew](http://brew.sh/)安装.
Java 8
RSA基本原理
RS