tf.get_variable函数的使用

tf.get_variable(name,  shape, initializer): name就是变量的名称,shape是变量的维度,initializer是变量初始化的方式,初始化的方式有以下几种:

tf.constant_initializer:常量初始化函数

tf.random_normal_initializer:正态分布

tf.truncated_normal_initializer:截取的正态分布

tf.random_uniform_initializer:均匀分布

tf.zeros_initializer:全部是0

tf.ones_initializer:全是1

tf.uniform_unit_scaling_initializer:满足均匀分布,但不影响输出数量级的随机值

例如:

import tensorflow as tf;  
import numpy as np;  
import matplotlib.pyplot as plt;  
  
a1 = tf.get_variable(name='a1', shape=[2,3], initializer=tf.random_normal_initializer(mean=0, stddev=1))
a2 = tf.get_variable(name='a2', shape=[1], initializer=tf.constant_initializer(1))
a3 = tf.get_variable(name='a3', shape=[2,3], initializer=tf.ones_initializer())

with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print sess.run(a1)
	print sess.run(a2)
	print sess.run(a3)
输出:

[[ 0.42299312 -0.25459203 -0.88605702]
 [ 0.22410156  1.34326422 -0.39722782]]
[ 1.]
[[ 1.  1.  1.]
 [ 1.  1.  1.]]

注意:不同的变量之间不能有相同的名字,除非你定义了variable_scope,这样才可以有相同的名字。

你可能感兴趣的:(tensorflow用法)