- 数字信号处理(DSP)全方位学习指南
本文还有配套的精品资源,点击获取简介:数字信号处理(DSP)是信息技术的关键部分,涉及多种数字信号的分析与处理技术,广泛应用于多个技术领域。本指南深入探索DSP的集成开发环境(IDE),基础概念,以及专业词汇,旨在帮助读者系统掌握DSP原理和实践技能。内容涵盖DSP集成开发环境CCS的使用、基础知识如傅里叶变换与滤波器设计,以及专业术语的学习。此外,还介绍了DSP在音频、图像处理和通信系统中的实际
- Python和MATLAB数字信号波形和模型模拟
要点Python和MATLAB实现以下波形和模型模拟以给定采样率模拟正弦信号,生成给定参数的方波信号,生成给定参数隔离矩形脉冲,生成并绘制线性调频信号。快速傅里叶变换结果释义:复数离散傅里叶变换、频率仓和快速傅里叶变换移位,逆快速傅里叶变换移位,数值NumPy对比观察FFT移位和逆FFT移位。离散时域表示:余弦信号生成取样,使用FFT频域信号表示,使用FFT计算离散傅里叶变换DFT,获得幅度谱并提
- Matplotlib 库来可视化频谱泄漏和加窗的效果
Mark White
matplotlib
前言很多朋友学习音频技术的时候,不理解这个频谱泄漏是什么,我们这次写个小代码直观地感受一下代码演示:频谱泄漏与加窗我们将生成一个简单的正弦波信号,然后分别用**不加窗(矩形窗)和加窗(汉明窗)**的方式对其进行傅里叶变换,并对比它们的频谱图。你会清晰地看到加窗如何减少了频谱泄漏。importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.fftimpo
- Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)
闲人编程
图像处理图像处理python计算机视觉FFTDCT傅里叶离散余弦变换
目录Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)一、引言1.1图像处理简介1.2快速傅里叶变换与离散余弦变换简介1.3本文目标与结构二、理论背景与数学原理2.1快速傅里叶变换(FFT)介绍2.2离散余弦变换(DCT)介绍2.3两者的应用领域与区别三、算法实现3.1快速傅里叶变换(FFT)实现3.1.1使用Python实现FFT3.1.2图像的频域处理3.2离散余弦变换
- 信号处理算法:快速傅里叶变换(FFT)_(2).FFT算法的原理与实现
kkchenkx
信号处理技术仿真模拟信号处理算法
FFT算法的原理与实现1.引言快速傅里叶变换(FastFourierTransform,FFT)是一种高效的算法,用于计算离散傅里叶变换(DiscreteFourierTransform,DFT)及其逆变换。DFT在信号处理、图像处理、通信工程等领域中有着广泛的应用,但其计算复杂度为O(N2)O(N^2)O(
- 快速傅里叶变换(FFT)是什么?
Yashar Qian
信号处理快速傅里叶变换
快速傅里叶变换(FFT)是什么?快速傅里叶变换(FFT)本质上是一种极其高效的算法,用来计算**离散傅里叶变换(DFT)**及其逆变换。它是数字信号处理、科学计算和工程应用中最重要的算法之一。要理解FFT,先理解它要解决的问题:离散傅里叶变换(DFT)是什么?DFT全称:**DiscreteFourierTransform(离散傅里叶变换)想象你有一段数字化的信号(比如一段音频采样、图像像素数据、
- VC++实现的快速傅里叶变换频谱分析软件
直推小新
本文还有配套的精品资源,点击获取简介:基于VC++和MFC的频谱分析程序通过快速傅里叶变换(FFT)技术,将时域信号转换至频域,实现对导入文本或Excel数据的离散谱分析。用户可通过图形界面轻松导入数据,选择分析选项并查看结果。程序利用FFT高效地计算频域数据,并通过图表展示信号频率成分。此分析工具适用于音频处理、通信、医学成像和机械故障诊断等领域。1.VC++和MFC框架介绍1.1VC++的发展
- Python实现快速傅里叶变换(FFT)
haodawei123
工作总结
importnumpyasnpimportmatplotlib.pyplotasplt#采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采#样频率为1400赫兹(即一秒内有1400个采样点,一样意思的)x=np.linspace(0,1,1400)#设置需要采样的信号,频率分量有180,390和600y=7np.sin(2np.p
- 深入Python:实现FFT与DFT
weixin_42668301
本文还有配套的精品资源,点击获取简介:快速傅里叶变换(FFT)和离散傅里叶变换(DFT)是处理时域信号转换到频域的数字信号处理核心工具。本课程深入介绍FFT与DFT的原理及Python实现,涵盖从基本概念到使用numpy库进行信号处理的实战应用。学生将学习如何使用Python中的numpy库来执行DFT,掌握通过Cooley-Tukey算法实现的FFT来高效处理大型数据集。通过实际案例,理解如何分
- 公钥密码体系崩溃风险:Shor算法可在多项式时间内破解RSA、ECC等基于大整数分解和离散对数问题的公钥算法。4099量子位的量子计算机运行Shor算法可在10秒内破解RSA2048
百态老人
算法量子计算
基于我搜索到的资料,以下从四个维度全面分析公钥密码体系的量子威胁现状及应对策略:一、Shor算法对公钥密码体系的威胁机制算法原理与攻击效率Shor算法通过量子傅里叶变换(QFT)高效求解整数分解和离散对数问题:核心步骤包括随机数生成、模指数周期检测(f(x)=axmod Nf(x)=a^x\modNf(x)=axmodN)和量子并行计算,复杂度仅O(log3N)O(\log^3N)O(log3
- [信号与系统]IIR滤波器与FIR滤波器的表达、性质以及一些分析
庭师_Official
信号与系统信号与系统信号处理
前言阅读本文需要阅读一些前置知识[信号与系统]傅里叶变换、卷积定理、和为什么时域的卷积等于频域相乘。[信号与系统]有关滤波器的一些知识背景[信号与系统]关于LTI系统的转换方程、拉普拉斯变换和z变换[信号与系统]关于双线性变换IIR滤波器的数学表达式IIR(InfiniteImpulseResponse)滤波器的输出信号y[n]y[n]y[n]可以用输入信号x[n]x[n]x[n]和滤波器系数表示
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- Python之scipy(算法/数学工具)用法
薛毅轩
python
scipy是一个开源的Python算法库和数学工具包,它基于NumPy,提供了许多用于数学、科学和工程的算法。scipy包含了统计、优化、积分、插值、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解等模块。以下是一些scipy库的基本用法示例:1.特殊函数scipy.special模块提供了许多数学上的特殊函数。fromscipyimportspecial#计算阶乘和组合数factor
- DSP芯片详解
一、DSP芯片的基本概念与核心特性定义与定位DSP(DigitalSignalProcessor)芯片是一种专为高速数字信号处理设计的微处理器,通过数学算法实时处理音频、视频、通信等领域的数字信号。其核心使命是优化复杂运算效率(如滤波、傅里叶变换),相比通用CPU,在特定任务中性能提升可达10倍以上。关键特性并行处理能力:单周期内完成乘法与加法(MAC操作),支持流水线执行。哈佛架构:程序与数据存
- J2GEZI.zip声全息成像算法:傅里叶变换与逆变换的实践
good2know
本文还有配套的精品资源,点击获取简介:声全息成像是一项利用声波特性进行三维空间重建的技术,与光学全息不同,它不依赖光,而是基于声波的干涉和衍射现象。本文档重点探讨了"J2GEZI.zip"中包含的声全息成像算法,特别强调了傅里叶变换和逆傅里叶变换在声场重建中的应用。傅里叶变换将声波信号从时域转换到频域,揭示其频率成分,而逆傅里叶变换则将频域信息转换回空间域,重建声场。该技术在声学检测、无损评估等领
- TI 毫米波雷达走读系列—— 3DFFT及测角
雷达爆破手
mmWaveRadar毫米波雷达嵌入式硬件AWR/IWR系列单片机
TI毫米波雷达走读系列——3DFFT及测角测角原理——角度怎么测测角公式——角度怎么算相位差测角基本公式为什么是3DFFT1.空间频率与角度的对应关系2.FFT的数学本质:离散空间傅里叶变换测角原理——角度怎么测本节内容解决角度怎么测的问题,首先要根据测角的场景对测角过程进行建模。测角模型的第一个前提是前方目标距离雷达较远(远场),这样目标的反射波是到达雷达阵前是可以近似成一个平行波面,即反射波到
- 【DSP笔记 · 第3章】数字世界的“棱镜”:离散傅里叶变换(DFT)完全解析
FF-Studio
DSP数字信号处理·笔记笔记自动化信号处理音频音视频fpga开发dsp开发
数字世界的“棱镜”:离散傅里叶变换(DFT)完全解析在上一章,我们探索了Z变换和离散时间傅里叶变换(DTFT)。我们知道,DTFT是一个无比强大的理论工具,它能将一个时域离散序列的“基因图谱”——也就是它的频谱——完整地揭示出来。理论上,只要我们知道了信号的DTFT,就知道了它包含的所有频率成分。但这里有一个巨大的“但是”。DTFT是理论上的完美,却在实践中遇到了一个无法逾越的鸿沟:DTFT的定义
- 信号处理方法
信号处理核心思想:信号与系统模型:理解信号特性(连续/离散、确定性/随机性、能量/功率)和系统特性(线性、时不变、因果、稳定)是选择合适处理方法的基础。域转换:许多强大的方法依赖于将信号从一个表示域(通常是时域)转换到另一个域(如频域、时频域、小波域),因为在新的域中,信号的某些特性或操作会变得更简单或更清晰。一基础变换与频域分析理解信号组成和进行滤波、谱分析的核心1.1傅里叶变换(Fourier
- 机器学习中的Python常用库(Numpy, Pandas, PIL, Matplotlib)
m0_74811578
机器学习pythonnumpy
1.Numpynumpy(NumericalPython的简称)是高性能科学计算和数据分析的基础包。其部分功能如下:ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组。用于对整组数据进行快速运算的标准数学函数(无需编写循环)。用于读写磁盘数据的工具以及用于操作内存映射文件的工具。线性代数、随机数生成以及傅里叶变换功能。用于集成由C、C++、Fortran等语言编写的代码的
- 嵌入式AI深度学习困局:当蛮力遇上巧劲,谁在拖后腿?
宋一平工作室
人工智能深度学习嵌入式硬件stm32
嵌入式AI深度学习困局:当蛮力遇上巧劲,谁在拖后腿?想象一下:你想在沙滩上找一枚硬币,深度学习就像雇了100个人手拉手地毯式搜索,而傅里叶变换就像先拿出金属探测器定位——前者累到吐血,后者轻松搞定。这就是嵌入式AI领域正在上演的"效率大战":当深度学习遇上资源受限的硬件环境,这场看似先进的技术革命,却频频卡在"性价比"的门槛上。一、深度学习的"土豪式"操作:买椟还珠的尴尬在嵌入式系统这个"寸土寸金
- 经典数学公式可视化工具1.0
辣香牛肉面
工具类数学公式可视化
概述经典数学公式可视化工具1.0是一款旨在通过图形化界面和动态交互帮助用户直观理解经典数学公式。软件以可视化方式展示公式的图形表现,并提供鼠标拖动、键盘控制等交互功能,适合学生、教师以及对数学和物理感兴趣的用户。软件支持14个经典公式(未来会增加更多有代表性的公式)包括:l麦克斯韦方程组l欧拉公式l牛顿第二定律l勾股定理l质能方程(E=mc²)l薛定谔方程l1+1=2l德布罗意关系l傅里叶变换(方
- Python·算法分类题库
欢迎关注【Python·算法分类题库】,持续更新中……知识点A字符串(AC自动机、拓展KMP、后缀数组、后缀自动机、回文自动机)图论(网络流、一般图匹配)数学(生成函数、莫比乌斯反演、快速傅里叶变换)数据结构(树链剖分、二维/动态开点线段树、平衡树、可持久化数据结构、树套树、动态树)B排序(归并、快速、桶、堆、基数)搜索(剪枝、双向BFS、记忆化搜索、迭代加深搜索、启发式搜索)DP(背包、树形、状
- matlab二维傅里叶变换ffshift,形象理解二维傅里叶变换
Fan Cheng
点击上方“机器学习与生成对抗网络”,关注"星标"获取有趣、好玩的前沿干货!来自|知乎阿姆斯特朗链接|https://zhuanlan.zhihu.com/p/110026009文仅交流,侵删1.回顾一下一维FT公式:通俗来讲,一维傅里叶变换是将一个一维的信号分解成若干个复指数波。而由于,所以可以将每一个复指数波都视为是余弦波+j*正弦波的组合。对于一个正弦波而言,需要三个参数来确定它:频率,幅度,
- 傅里叶变换原理与scipy.fft模块应用(九)
WHCIS
SciPyscipy算法python
引言傅里叶变换是信号处理和分析领域中最为强大的数学工具之一。它能够将信号从时域(随时间变化的表示)转换到频域(频率成分的表示),从而帮助我们从不同角度理解信号的特性。傅里叶变换在信号处理、图像处理、通信工程、谱分析等领域有着广泛的应用。本教程将深入探讨傅里叶变换的数学基础,详细介绍scipy.fft模块中主要函数的使用方法,对比时域和频域分析的实现差异,并通过实际案例演示频谱分析与滤波的工程实践方
- python实现DFT并绘制功率谱 (附完整源码)
源代码大师
Python实战教程python开发语言
python实现DFT并绘制功率谱以下是使用Python实现离散傅里叶变换(DFT)并绘制功率谱的完整源码。该代码包括生成一个示例信号、手动计算DFT、计算功率谱以及使用Matplotlib绘制结果。importnumpyasnpimportmatplotlib.pyplotaspltdefDFT(x):"""计算离散傅里叶变换(DFT)参数:x(numpy.ndarray):输入时域信号返回:X
- 菲涅耳计算全息图matlab,基于Matlab的计算全息图的制作与数字再现的研究
weixin_39617405
菲涅耳计算全息图matlab
基于Matlab的计算全息图的制作与数字再现的研究应用Matlab语言,结合博奇型计算全息的编码方法,利用计算机分别绘制了菲涅耳全息图和傅里叶变换全息图,实现了计算全息图的快速制作,讨论了制作计算全息图的原理、方法和步骤。利用CGH技(本文共5页)阅读全文>>全息技术记录了物光波的全部信息,能够实现具有物理景深效果的再现成像。计算全息是运用计算机生成物光波全息图技术,通过计算机编码实现光学全息记录
- matlab傅里叶变换去噪代码,[转载]MATLAB小波去噪
香港键师傅
matlab傅里叶变换去噪代码
MATLAB中用wnoise函数测试去噪算法sqrt_snr=3;init=231434;[x,xn]=wnoise(3,11,sqrt_snr,init);%WNOISEgeneratenoisywavelettestdata.%X=WNOISE(FUN,N)returnsvaluesofthetestfunctiongivenbyFUN,ona%2^Nsampleof[0,1].[X,XN]=
- 三维粗糙表面程序
周斐灿Phoebe
三维粗糙表面程序三维粗糙表面程序本资源文件提供了一个用于生成三维随机粗糙表面的Matlab程序。该代码能够生成人造的各向同性随机粗糙表面,适用于模拟从工程表面的纳米特征到山脉、地形或景观的大规模地形。程序基于分形理论,使用傅里叶变换(特别是功率谱密度)来生成表面形貌。生成的表面有两种选择:带有滚降区域或不带滚降区域。如果您不熟悉滚降的概念,请参考上传的图片以获取更多信息项目地址:https://g
- 如何成为一名硬件工程师——信号与系统篇
锡渣仙人
嵌入式硬件硬件工程arm开发
首先,要从信号与系统的角度成为一名优秀的嵌入式硬件工程师,需要建立完整的知识体系,并将理论知识与工程实践深度结合。必须扎实掌握信号与系统的核心理论,包括时域分析中的卷积运算和冲激响应,这对理解滤波器设计至关重要;频域分析中的傅里叶变换则是频谱分析和无线通信调制解调的基础;而Z变换和离散系统理论为数字滤波器设计和控制系统稳定性分析提供了数学工具。奈奎斯特采样定理更是ADC设计不可逾越的红线,需要深入
- 信号处理仿真:信号检测与估计_(14).现代谱估计方法
kkchenkx
信号仿真2信号处理概率论机器学习图像处理计算机视觉
现代谱估计方法引言在信号处理领域,谱估计是一项重要的技术,用于分析信号的频谱特性。传统的谱估计方法,如傅里叶变换,虽然简单有效,但在某些情况下(例如噪声较大的环境或信号频率成分较低时)可能无法提供准确的估计结果。现代谱估计方法通过引入更复杂的数学模型和算法,能够有效提高谱估计的精度和分辨率。本节将详细介绍几种现代谱估计方法,包括非参数方法和参数方法,并通过具体的例子和代码演示这些方法的应用。非参数
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(