- 瓷的史诗:7000年窑火中的文明基因与全球共振
喝醉酒的小白
破万卷学习
目录瓷的史诗:7000年窑火中的文明基因与全球共振一、技术革命:从土到玉的嬗变(前5000年-1840年)二、中国篇:瓷的文明塑形(经济/文化/政治)三、全球篇:瓷的文明共振(技术/艺术/社会)四、沉船考古:瓷的全球航行实证五、现代性转化:瓷的文明重生六、学术前沿:瓷的物质文化研究结语:瓷的文明语法最出名?一、**宋代五大名窑:瓷器美学的天花板**二、**元青花:改写世界陶瓷史的里程碑**三、**
- F4拉力赛(滑动窗口)
lanmaoki
华为算法题c++算法开发语言
题目描述F4拉力赛在一个环形公路上举行,主办方为了拉来更多赞助,在环形公路每间隔一米就设立一块广告牌。假设赛车的速度为x米/秒,请问赛车在一秒内经过最多数量的广告牌编号是什么?输入描述第一行输入一个数组,数组元素是环形公路上的广告牌编号,数组头尾元素可以认为相邻。输入格式见用例。数组长度最大1000000。数组元素是正整数不大于100。第二行输入赛车速度x米/秒。用例保证x不大于数组长度。输出描述
- 新手村:线性回归-实战-波士顿房价预测
嘉羽很烦
机器学习线性回归算法回归
新手村:线性回归-实战-波士顿房价预测前置条件阅读:新手村:线性回归了解相关概念实验目的1.熟悉机器学习的一般流程2.掌握基础的数据处理方法3.理解常用的回归算法教学例子:预测房价(以波士顿房价数据集为例)本次实验,你将使用真实的波士顿房价数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念和评价方法,请通过机器学习建立回归模型,即:Y=θ0+θ1×X1+θ2×X2+θ3×X3+⋯+θ
- 新手村:混淆矩阵
嘉羽很烦
机器学习机器学习
新手村:混淆矩阵一、前置条件知识点要求学习资源分类模型基础理解分类任务(如二分类、多分类)和常见分类算法(如逻辑回归、决策树)。《Hands-OnMachineLearningwithScikit-Learn》Python基础熟悉变量、循环、函数、列表、字典等基本语法。《PythonCrashCourse》或在线教程(如Codecademy)scikit-learn基础掌握模型训练、预测、评估的基
- 代码编辑器 v2.0 3月22日上线!
浔川社团官方联合会
浔川社团官方联合会浔川AI翻译研发社团浔川代码编辑器研发分社团编辑器
代码编辑器v2.0下周六上线!亲爱的用户们:经过我们团队的不懈努力与精心打磨,备受期待的代码编辑器v2.0即将在下周六(3月22日)正式上线,为大家带来更加高效、便捷、智能的代码编写体验!此次代码编辑器v2.0版本,在功能上实现了重大突破与升级。我们优化了代码的智能提示系统,能够更精准、快速地预测您需要的代码片段,极大提升编写效率;全新的代码结构分析功能,可直观展示代码的层级关系,让复杂的代码逻辑
- Matlab 高效编程:用矩阵运算替代循环
算法工程师y
matlab矩阵java
引言在Matlab中,循环(如for或while)虽然易于理解,但可能导致性能瓶颈,尤其是处理大规模数据时。矩阵运算的向量化是Matlab高效编程的核心,利用内置函数和矩阵操作避免逐元素处理,可显著提升代码速度(有时甚至提速百倍)。本文将通过实例演示如何将循环逻辑转化为矩阵运算。1.为什么矩阵运算比循环快?Matlab底层基于C/C++和Fortran高度优化的矩阵库(如BLAS、LAPACK),
- 利用matlab实现贝叶斯优化算法(BO)优化支持向量机回归(SVR)的超参数
是内啡肽耶
算法matlab支持向量机机器学习回归
【导读】在机器学习建模中,支持向量机(SVM)回归模型的效果高度依赖超参数选择。但手动调参就像"大海捞针",而网格搜索又面临"计算爆炸"的难题。今天给大家介绍一个智能调参黑科技——贝叶斯优化算法。通过Matlab实现,只需几分钟就能让模型性能自动升级!一、为什么要用贝叶斯优化调参?传统调参三大痛点:C参数(正则化强度):过小导致过拟合,过大削弱模型能力ε参数(不敏感区域):决定对预测误差的容忍度核
- 深度学习处理时间序列(2)
yyc_audio
深度学习笔记深度学习人工智能
在数据中寻找周期性在多个时间尺度上的周期性,是时间序列数据非常重要且常见的属性。无论是天气、商场停车位使用率、网站流量、杂货店销售额,还是健身追踪器记录的步数,你都会看到每日周期性和年度周期性(人类生成的数据通常还有每周的周期性)。探索数据时,一定要注意寻找这些模式。(让人想到波,想到傅里叶变换)对于这个数据集,如果你想根据前几个月的数据来预测下个月的平均温度,那么问题很简单,因为数据具有可靠的年
- 机器学习的下一个前沿是因果推理吗?——探索机器学习的未来方向!
真智AI
人工智能机器学习
机器学习的进化:从预测到因果推理机器学习凭借强大的预测能力,已经彻底改变了多个行业。然而,要实现真正的突破,机器学习还需要克服实践和计算上的挑战,特别是在因果推理方面的应用。未来,因果推理或许将成为推动机器学习发展的新前沿。什么是因果推理,它如何与机器学习相关?如果你和我一样没有数学背景,你可能会好奇“因果推理”到底意味着什么?它与机器学习又有什么关系?当我刚开始学习机器学习时,第一次听到“因果推
- Java编程基础第二日
13.544
java开发语言编程小白
#变量的类型转换#1.自动类型转换所需满足的两个条件:1.两种数据的类型彼此兼容2.目标类型的取值范围要大于源类型的取值范围发生自动类型转换的情况主要有:整型之间,整型转化为float,其他类型转化为double类型。2.强制类型转换(需要声明)当数据类型并不满足自动类型转换的条件,但我们仍有进行转换的需求e.g:这时候就需要我们进行强制类型转换,即将byteb=num改为byteb=(byte)
- 书籍棱面广告投放的创新设计方法.zip
罗博深
本文还有配套的精品资源,点击获取简介:本创新方法将广告技术与传统书籍相结合,采用特殊印刷技术在书籍立体棱面上展示广告。通过材料、涂料的科技应用及光学原理,确保在不同光照下的视觉效果。设计考虑视觉吸引力、技术可行性及用户体验,可能结合AR技术增强互动性。需多方合作实现,包括印刷厂商、材料供应商和广告客户。此技术提供了新的广告展示平台,可能改变出版销售模式,并与数字营销结合。尽管面临技术挑战和成本问题
- 智慧运维与物联网技术在地铁车辆段的应用项目
罗博深
本文还有配套的精品资源,点击获取简介:随着物联网技术的广泛应用,智慧运维系统通过传感器、大数据分析、云计算等技术集成,提升了地铁车辆段的运维效率和安全性。该系统可以实时监控设备状态、预测故障、提供智能决策支持、优化维护策略,并降低运营成本,同时提高乘客安全。其应用拓展至整个地铁线路,乃至与城市交通系统协同,展现了智慧运维对公共交通系统现代化的贡献。1.物联网技术基础与应用物联网(Interneto
- 构建多序列比对的删除矩阵Deletion Matrix
qq_27390023
生物信息学pytorch深度学习人工智能
从多序列比对(MultipleSequenceAlignment,MSA)数据中构建删除矩阵(DeletionMatrix)是蛋白质结构预测中的一个重要步骤。删除矩阵记录了每个位置相对于参考序列的缺失(deletion)信息,这些信息对于理解蛋白质的进化关系和结构变化非常关键。以下是从A3M格式文件的MSA序列数据中构建删除矩阵的核心代码和示例解析。1.A3M格式文件(.a3m):每个序列都以>开
- 【JCR一区级】被囊群算法TSA-Transformer-GRU负荷数据回归预测【含Matlab源码 6309期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- ARM N2微架构介绍
「已注销」
CPU微架构verilog
简介之前在“ARMV2处理器微架构介绍”一文中介绍了面向服务器、云计算等应用的ARMV2处理器微架构,V系列具有更强性能,N系列强调性能和功耗等方向的平衡,本文就将介绍一下ARMN2处理器微架构相比较前代的一些提升。尽管ARM还具备一代N1/V1的服务器端处理器,但严格意义讲N2是ARM相对成熟的第一代服务器端处理器IP。前端Front-End前端的设计相比较前代可以说是巨大提升,预测和取指依然是
- 深入探究YOLO系列的骨干网路
编码实践
YOLO深度学习计算机视觉
深入探究YOLO系列的骨干网路YOLO系列是目标检测领域中非常知名的算法。其通过将整个图像作为输入,并且直接在图像上通过一个单独的神经网络输出每个检测框的类别预测和边界框信息。为了更好地理解YOLO系列,我们需要先了解它所使用的骨干网路。骨干网络是深度学习模型中的核心部分,负责提取图像的特征。如今常用的骨干网络有VGG、ResNet和MobileNet等。YOLO系列算法采用的是Darknet骨干
- 如何用deepseek炒股
Real Man★
python机器学习人工智能
使用DeepSeek进行炒股的核心思路是利用其强大的数据处理和预测能力,辅助投资决策。以下是具体的应用方法和步骤:一、数据收集与处理获取市场数据股票数据:通过API(如Tushare、YahooFinance)获取历史股价、成交量、财务数据等。新闻与舆情:使用DeepSeek的NLP能力分析新闻、社交媒体和公告,提取市场情绪和事件影响。宏观经济数据:收集GDP、利率、通胀等数据,分析其对股市的影响
- 房产租赁数据分析与可视化
学习只是用户态
数据分析信息可视化数据挖掘
【实训目的】 通过本次实训,要求了解Python用于数据可视化的常用包:matplotlib、seaborn、pyecharts等基本使用,及各种图形的使用。【实训环境】 Jupyter环境、Pandas、NumPy、Matplotlib。【实训内容】 1.数据统计与分析方面的可视化; 2.数据分析与预测方面的可视化; 3.数据多类型的可视化。 本次实验以温州市三区房屋租赁数据(res
- DeepSeek结合Python炒股:编写量化交易策略的5个关键技巧
财云量化
程序化交易量化交易python炒股自动化pythonDeepSeek股票量化接口股票程序化交易
python炒股(0):申请官方API接口,个人账户无门槛python炒股自动化(1):量化交易接口区别Python炒股自动化(2):取股票实时数据和历史数据Python炒股自动化(3):分析实时数据和历史数据Python炒股自动化(4):通过接口向交易所报单炒股自动化(5):通过接口查单查账炒股自动化:散户也可以申请官方API接口量化交易的核心在于将策略思想转化为可执行的代码,本文结合券商的AP
- KNN算法性能优化技巧与实战案例
可问 可问春风
算法性能优化
KNN算法性能优化技巧与实战案例K最近邻(KNN)在分类和回归任务中表现稳健,但其计算复杂度高、内存消耗大成为IT项目中的主要瓶颈。以下从算法优化、数据结构、工程实践三方面深入解析性能提升策略,并附典型应用案例。一、核心性能瓶颈维度挑战描述计算复杂度单次预测需计算全部训练样本距离,时间复杂度为(n=样本数,d=特征维度)内存占用需全量存储训练数据,大规模数据集难以加载高维灾难高维数据中距离计算失去
- postgis与高德地图转化
Vic2334
数据库postgresql学习
SQL转化将PostGIS中的地理数据与高德地图所需的格式进行匹配可以涉及以下几个步骤:1.数据格式:首先,需要了解高德地图所需的地理数据格式。通常,高德地图可能接受常见的地理数据格式,如WGS84坐标系的经纬度坐标。2.坐标系转换:如果PostGIS中的地理数据使用的是不同的坐标系,可能需要进行坐标系转换。这可以通过使用专门的坐标转换库或工具来完成。3.数据提取:从PostGIS中提取所需的地理
- 如何选择显卡(202408)
=PNZ=BeijingL
操作系统经验分享1024程序员节
(图片来自网络)显卡,也被称为视频卡、图形适配器或GPU(图形处理单元),是电脑中负责渲染图形输出到显示器的关键硬件组件一显卡的基本作用1.图形渲染显卡的主要任务是处理和渲染图形。无论是浏览网页、观看视频还是使用图形设计软件,所有这些操作都需要显卡来计算图形信息,并将其转化为可在屏幕上显示的图像。显卡包含专门设计用于图形处理的芯片,可以快速执行这些操作,从而提供流畅和高质量的视觉体验。2.加速图形
- Matlab多种算法解决未来杯B的多分类问题
Subject.625Ruben
算法分类机器学习数学建模未来杯matlab人工智能
1.读取数据首先,我们从Excel文件中读取训练集和测试集:2.训练集划分我们将80%的数据用于训练,20%用于验证。3.训练多个模型我们选取8种常见分类模型,并存储预测结果。fori=1:length(modelNames)switchmodelNames{i}case'MultinomialLogisticRegression'B=mnrfit(X_train,Y_train,'model',
- RAW图与BAYER图异同
越甲八千
【opencv学习】【海康相机视觉案例】计算机视觉人工智能
RAW图是一种未经处理、未压缩的图像文件格式,它记录了图像传感器捕捉到的原始数据,包含了拍摄时的大量图像信息。下面从多个方面详细介绍RAW图:参考:B站大清光学定义与基本概念定义:RAW文件是图像传感器将捕捉到的光源信号转化为数字信号的原始数据。相机在拍摄时,光线通过镜头到达图像传感器,传感器将光线的强度、颜色等信息转化为电信号,再经过模数转换变成数字数据,RAW格式直接保存这些原始数据,而不经过
- elasticsearch analyzer 学习笔记
weixin_40455124
elasticsearch代码分析及扩展elasticsearchanalyzertoken
基本定义analyzer执行将输入字符流分解为token的过程使用场景在indexing的时候,也即在建立索引的时候在searching的时候,也即在搜索时,分析需要搜索的词语analysisCharacterfiltering(字符过滤器):使用字符过滤器转换字符Breakingtextintotokens(把文字转化为标记):将文本分成一组一个或多个标记Tokenfiltering:使用标记过
- 自动化测试:从入门到精通的全面指南
测试工程师成长之路
测试工程师成长之路自动化测试
一、引言在当今数字化时代,软件行业蓬勃发展,软件产品的更新换代愈发频繁。为了确保软件的质量和稳定性,测试工作变得至关重要。然而,随着软件规模的不断扩大和功能的日益复杂,传统的手工测试方法逐渐暴露出效率低下、容易出错等问题。自动化测试作为一种高效、可靠的测试手段,应运而生并迅速发展,成为现代软件测试领域不可或缺的一部分。自动化测试是指借助专门的测试工具和编程技术,将原本由人工执行的测试用例转化为机器
- 基于时间序列预测的推理服务弹性扩缩容实战指南:(行业案例+数学推导+源码解析)
燃灯工作室
Ai计算机视觉语音识别目标检测机器学习人工智能
技术原理(数学公式)整体架构请求量预测→扩缩容决策→资源配置动态调整三阶段闭环,周期为5-30分钟核心预测模型(时间序列预测)LSTM预测公式(CSDN兼容格式):$$h_t=\text{LSTM}(x_t,h_{t-1})\\\hat{y}_{t+1}=W_h\cdoth_t+b_h$$其中Wh∈Rd×1W_h\in\mathbb{R}^{d\times1}Wh∈Rd×1为权重矩阵,ddd为隐藏
- 【图像处理】ISP(Image Signal Processor) 图像处理器的用途和工作原理?
AndrewHZ
图像处理基石图像处理智能手机影像系统算法深度学习人工智能ISP
ISP(图像信号处理器)是数字影像设备的“视觉大脑”,负责将传感器捕获的原始电信号转化为我们看到的高清图像。以下从用途和工作原理两方面通俗解析:一、ISP的核心用途:让照片“更像眼睛看到的”提升画质:降噪:去除暗光下的噪点(如手机夜景模式,通过多帧合成+算法抑制噪点)。色彩还原:校正传感器偏色(例如索尼传感器常偏黄,ISP通过白平衡算法还原真实色彩)。动态范围优化:保留高光和暗部细节(类似HDR,
- Python自动化炒股:基于自然语言处理的股票新闻情感分析模型开发与优化的最佳实践
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:基于自然语言处理的股票新闻情感分析模型开发与优化的最佳实践在股市中,信息的力量是巨大的。一条新闻、一篇报道,甚至一条推文,都可能引发股价的波动。因此,利用自然语言处理(NLP)技术来分析股票新闻的情感倾向,可以帮助我们预测市场动向,从而做出更明智的投资决策。本文将带你了解如何开发和优化一个基于Pytho
- Python中的eval函数
a1274646034
python
一、简介:eval函数就是实现list、dict、tuple与str之间的转化,而str函数实现把list、dict、tuple转换成字符串1、字符串转化为列表1#字符串转化为列表2a="[[1,2],[3,4],[5,6],[7,8],[9,10]]"3print(type(a))4b=eval(a)5print(type(b))6print(b)123[[1,2],[3,4],[5,6],[7
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。