表格
表格的表头
表格的行
表格单元
表格标题
表格列的组
用于表格列的属性
表格的页眉
表格的主体
表格的页脚
极简版
font size=“5”
def save_html ( ls_of_ls, prefix) :
fname = prefix + '.html'
with open ( fname, 'w' , encoding= 'utf-8' ) as f:
f. write( '\n')
for ls in ls_of_ls:
f. write( '')
for i in ls:
f. write( ' {} '. format ( i) )
f. write( ' \n' )
f. write( '
' )
ls_of_ls = [ [ '笑菊花' , '深扣菊花舔指笑,菊花一闪误终身' ] , [ '菊花红' , '接天莲叶无穷碧,硬日菊花别样红' ] ]
save_html( ls_of_ls, '菊花' )
详细版(+列名)
def save_html ( table, prefix) :
fname = prefix + '.html'
with open ( fname, 'w' , encoding= 'utf-8' ) as f:
f. write( ' \n' )
f. write( table)
f. write( '' )
def make_table ( ls_of_ls, fields= None ) :
th = '%s \n' % '' . join( ' {} '. format ( i) for i in fields) if fields else ''
tr = '\n' . join(
'' + '' . join( ' {} '. format ( i) for i in ls) + ' '
for ls in ls_of_ls)
return '' % ( th + tr)
ls_of_ls = [ [ '笑菊花' , '深扣菊花舔指笑,菊花一闪误终身' ] , [ '菊花红' , '接天莲叶无穷碧,硬日菊花别样红' ] ]
fields = [ 'title' , 'article' ]
save_html( make_table( ls_of_ls, fields) , '菊花' )
< html> < head> < meta charset = " UTF-8" > head> < body> < table border = " 1" >
< tr> < td> < font size = " 5" > 笑菊花 font> td> < td> < font size = " 5" > 深扣菊花舔指笑,菊花一闪误终身 font> td> tr>
< tr> < td> < font size = " 5" > 菊花红 font> td> < td> < font size = " 5" > 接天莲叶无穷碧,硬日菊花别样红 font> td> tr>
table> body> html>
更详细版(+跨行)
td rowspan=“3”
def save_html ( table, prefix) :
fname = prefix + '.html'
with open ( fname, 'w' , encoding= 'utf-8' ) as f:
f. write( ' \n' )
f. write( table)
f. write( '' )
def make_table ( tb, fields= None ) :
th = '%s \n' % '' . join( ' {} '. format ( i) for i in fields) if fields else ''
return '' % ( th + tb)
def make_tr_by_ls ( ls_of_ls) :
return '\n' . join(
'' + '' . join( ' {} '. format ( i) for i in ls) + ' '
for ls in ls_of_ls)
def make_tr_by_dt ( dt_of_ls) :
return '\n' . join(
'%s%s ' % ( ' %s ' % ( len ( v) , k) if i == 0 else '' , v[ i] )
for k, v in dt_of_ls. items( )
for i in range ( len ( v) ) )
dt_of_ls = { '苹果' : [ '苹果醋' ] , '华为' : [ ] , '小米' : [ '小米粥' , '小米蛋' , '小米肠' ] }
fields = [ 'title' , 'article' ]
tr = make_tr_by_dt( dt_of_ls)
tb = make_table( tr, fields)
save_html( tb, '手机' )
< html> < head> < meta charset = " UTF-8" > head> < body> < table border = " 1" >
< tr> < th> title th> < th> article th> tr>
< tr> < td rowspan = " 1" > 苹果 td> < td> 苹果醋 td> tr>
< tr> < td rowspan = " 3" > 小米 td> < td> 小米粥 td> tr>
< tr> < td> 小米蛋 td> tr>
< tr> < td> 小米肠 td> tr>
table> body> html>
更更详细版(列数>2)
def save_html ( table, prefix) :
fname = prefix + '.html'
with open ( fname, 'w' , encoding= 'utf-8' ) as f:
f. write( ' ' )
f. write( table)
f. write( '' )
def make_table ( tb, fields= None ) :
th = '%s \n' % '' . join( ' {} '. format ( i) for i in fields) if fields else ''
return '' % ( th + tb)
def make_tr_by_dts ( dt_of_lss) :
return '\n' . join(
'%s%s ' % ( ' %s ' % ( len ( v) , k) if i == 0 else '' ,
'' . join( ' %s ' % j for j in v[ i] ) )
for k, v in dt_of_lss. items( )
for i in range ( len ( v) ) )
fields = [ 'text' , 'phrase' , 'word' ]
dt_of_lss = {
'用小米机买小米粥和苹果汁' : [ ( '小米机' , '小米' ) , ( '小米粥' , '小米' ) , ( '苹果汁' , '苹果' ) ] ,
'买华为送大米' : [ ] ,
'买大米送苹果醋' : [ ( '苹果醋' , '苹果' ) ] ,
}
tr = make_tr_by_dts( dt_of_lss)
tb = make_table( tr, fields)
save_html( tb, '手机' )
NLP版(NER)
from jieba import tokenize
replace_html_tag = lambda word: '' + word + ''
replace_word = lambda sentence, word, head, tail: sentence[ : head] + word + sentence[ tail: ]
def save_html ( table, prefix) :
fname = prefix + '.html'
with open ( fname, 'w' , encoding= 'utf-8' ) as f:
f. write( ' ' )
f. write( table)
f. write( '' )
def make_table ( tb, fields= None ) :
th = '%s \n' % '' . join( ' {} '. format ( i) for i in fields) if fields else ''
return '' % ( th + tb)
def make_tr_by_dts ( dt_of_lss) :
return '\n' . join(
'%s%s ' % ( ' %s ' % ( len ( v) , k) if i == 0 else '' ,
'' . join( ' %s ' % j for j in v[ i] ) )
for k, v in dt_of_lss. items( )
for i in range ( len ( v) ) )
fields = [ 'text' , 'phrase' , 'word' ]
texts = [ '买小米机,送了袋小米和苹果' , '诺基亚' , '买华为送苹果' ]
entities = { '小米' , '苹果' }
dt_of_lss = dict ( )
for text in texts:
dt_of_lss[ text] = [ ]
for sentence in text. split( ',' ) :
for word, head, tail in tokenize( sentence) :
if word in entities:
dt_of_lss[ text] . append( [
replace_word( sentence, replace_html_tag( word) , head, tail) ,
word
] )
tb = make_table( make_tr_by_dts( dt_of_lss) , fields)
save_html( tb, '手机' )
< html> < head> < meta charset = " UTF-8" > head> < body> < table border = " 1" >
< tr> < th> text th> < th> phrase th> < th> word th> tr>
< tr> < td rowspan = " 3" > 买小米机,送了袋小米和苹果 td> < td> 买< font color = " red" > 小米 font> 机 td> < td> 小米 td> tr>
< tr> < td> 送了袋< font color = " red" > 小米 font> 和苹果 td> < td> 小米 td> tr>
< tr> < td> 送了袋小米和< font color = " red" > 苹果 font> td> < td> 苹果 td> tr>
< tr> < td rowspan = " 1" > 买华为送苹果 td> < td> 买华为送< font color = " red" > 苹果 font> td> < td> 苹果 td> tr>
table> body> html>
你可能感兴趣的:(数据处理)
高效批量单词翻译工具的设计与应用
本文还有配套的精品资源,点击获取简介:在信息技术飞速发展的今天,批量单词翻译工具通过计算机的数据处理能力,大大提高了语言学习和文字处理的效率。用户通过简单输入单词列表到一个文本文件,并运行翻译程序,即可获得翻译结果并保存至指定文件。该工具集成了内置或外部翻译引擎,利用自然语言处理技术实现快速准确的翻译,并可能提供词性识别等附加功能。尽管机器翻译无法完全取代人工校对,但它为用户提供了一种高效的翻译解
[特殊字符] 实时数据洪流突围战:Flink+Paimon实现毫秒级分析的架构革命(附压测报告)——日均百亿级数据处理成本降低60%的工业级方案
Lucas55555555
flink 大数据
引言:流批一体的时代拐点据阿里云2025白皮书显示,实时数据处理需求年增速达240%,但传统Lambda架构资源消耗占比超运维成本的70%。某电商平台借助Flink+Paimon重构实时数仓后,端到端延迟从分钟级压缩至800ms,计算资源节省5.6万核/月。技术红利窗口期:2025年ApachePaimon1.0正式发布,支持秒级快照与湖仓一体,成为替代Iceberg的新范式一、痛点深挖:实时数仓
提升企业级数据处理效率!TDengine 四个集群优化点详解
TDengine (老段)
TDengine 运维 大数据 数据库 物联网 时序数据库 服务器 运维 tdengine
为了帮助企业更好地进行大数据处理,我们在此前TDengine3.x系列版本中进行了几项与集群相关的优化和新功能开发,以提升集群的稳定性和在异常情况下的恢复能力。这些优化包括clusterID隔离、leaderrebalance、raftlearner和restorednode。本文将对这几项重要优化进行详细阐述,以解答企业在此领域的疑问,并帮助大家更好地应对相关挑战。clusterID隔离问题fi
全面探索Kafka:架构、应用与流处理
Kafka:企业级消息系统与流处理平台的深度解析ApacheKafka作为分布式流处理平台,广泛应用于大数据处理和实时分析领域。本文将基于其官方文档,详细探讨Kafka的核心功能、应用场景以及如何进行有效管理。背景简介Kafka作为高吞吐量的消息系统,支持企业级的发布-订阅模式。它能够处理大量实时数据,并支持高并发读写操作。本文将依据Kafka官方文档的内容,逐层深入,从入门到高级应用,帮助读者全
Flink DataStream API详解(一)
bxlj_jcj
Flink flink 大数据
一、引言Flink的DataStreamAPI,在流处理领域大显身手的核心武器。在很多实时数据处理场景中,如电商平台实时分析用户购物行为以实现精准推荐,金融领域实时监控交易数据以防范风险,DataStreamAPI都发挥着关键作用,能够对源源不断的数据流进行高效处理和分析。接下来,就让我们一起深入探索FlinkDataStreamAPI。二、DataStream编程基础搭建在开始使用FlinkDa
OpenCV图像数据处理:convertTo,normalize和scaleAdd
luofeiju
OpenCV函数实战 opencv
在OpenCV图像处理的世界里,有几个函数进行一些基本数据变换:cv::convertTo():类型转换与线性缩放;cv::normalize():归一化处理;cv::scaleAdd():加权叠加运算。cv::addWeighted():与scaleAdd相似,进行加权叠加运算;一、cv::convertTo():线性变换+数据类型转换voidcv::Mat::convertTo(OutputA
Matlab裁剪降水数据:1km掩膜制作实战
咋(za)说
matlab 降水数据处理 裁剪掩膜制作 降水数据裁剪 China_Pre
1km降水数据处理-制作数据裁剪掩膜1.数据概述2掩膜文件制作示例2.1数据准备2.2matlab掩膜制作示例代码3结语 中国1km分辨率逐月降水量数据集(1901-2024)是高精度、长时间序列的气候数据产品,广泛应用于水文、生态、农业等领域的研究。本篇基于应用需要,以该数据集为输入,结合研究区shp边界文件,制作用于数据提取/裁剪的掩膜文件。下面为具体内容。1.数据概述 中国1km分辨率逐
【Python办公】Excel透视转数据图表(饼状图\柱状图\折线图-可拓展)
小庄-Python办公
Python办公自动化 python excel 开发语言 Excel透视 Excel透视工具 python数据分析 数据分析
目录专栏导读前言项目概述技术栈选择核心依赖库核心架构设计类结构设计数据流设计界面设计实现布局结构动态界面更新核心功能实现1.透视表计算2.数据排序功能3.数据可视化4.数据统计功能错误处理和用户体验输入验证异常处理项目亮点和创新点1.灵活的多列组合2.智能数据类型处理3.一体化的数据处理流程4.用户友好的界面设计使用场景扩展建议功能扩展性能优化总结完整代码结尾专栏导读欢迎来到Python办公自动化
【鸿蒙实战开发】HarmoneyOS如何添加首选项功能
「已注销」
鸿蒙 安卓 前端 harmonyos java 华为 android 鸿蒙 前端
什么是用户首选项?用户首选项为应用提供Key-Value键值型的数据处理能力,支持应用持久化轻量级数据,并对其修改和查询。当用户希望有一个全局唯一存储的地方,可以采用用户首选项来进行存储。Preferences会将该数据缓存在内存中,当用户读取的时候,能够快速从内存中获取数据,当需要持久化时可以使用flush接口将内存中的数据写入持久化文件中。用户首选项运作机制用户首选项的使用场景Preferen
数据库备份、导入、开窗函数及优化方式全解析
云朵大王
数据库
在数据库的日常管理和操作中,备份与导入是保障数据安全的重要手段,开窗函数能提升数据处理的灵活性,而合理的优化方式则是保证数据库高效运行的关键。今天,我们就来全面梳理这些知识点,并通过例题加深理解。一、数据库备份与导入(一)核心知识点数据库备份,简单来说就是通过转存SQL文件,将数据库的结构和数据完整保存下来。这就好比给数据库做了一个“快照”,一旦数据出现丢失、损坏等问题,这个“快照”就能派上大用场
如何通过YashanDB优化企业大数据处理流程
数据库
在当今数据驱动的商业环境中,企业面临着巨大的数据处理挑战。性能瓶颈、数据一致性问题和可扩展性需求使得大数据处理成为一项复杂任务。作为一种新兴的数据库管理系统,YashanDB以其独特的架构设计和强大的数据处理能力,在解决这些挑战方面提供了有效的手段。本文旨在探讨如何利用YashanDB优化大数据处理流程,为企业提供高效、可靠的解决方案。YashanDB的体系架构与部署形态YashanDB支持多种部
基于Python的旅游数据可视化应用
摘要本文详细介绍了一个功能完善的基于Python语言开发的旅游行业数据可视化分析应用系统。该系统采用Pandas这一强大的数据处理库进行数据清洗、转换和预处理工作,确保数据质量可靠。在可视化展示方面,系统整合了Matplotlib和Seaborn两大主流可视化库,通过丰富的图表类型直观呈现数据分析结果。特别值得一提的是,所有可视化图表均采用统一的绿色主题配色方案,这种设计不仅美观大方,更能突出体现
Pandas 学习教程
_pass_
Data-Alaysis pandas 信息可视化
目录定义基本操作一维数组操作二维数组操作数据选择过滤数据处理数据清洗数据转换数据分析排序分组聚合数据透视表高级操作合并数据时间序列处理自定义函数调用数据可视化集成数据导出和导入大数据分块处理定义全称:'paneldata'and'pythondataanalysis'Analy:Series(一维数据)、DataFrame(二维数据)主要应用:数据清洗:处理缺失数据、重复数据等数据转换:改变数据的
华为云对碳管理系统的全生命周期数据处理流程
Hy行者勇哥
华为云知识 华为云
碳管理系统的全生命周期数据处理流程包含完整的数据采集、处理、治理、分析和应用的流程架构,可以理解为是一个核心是围绕数据的“采集-传输-处理-存储-治理-分析-应用”链路展开。以下是对每个阶段的解释,以及它们与数据模型、算法等的关系:1.设备接入(IoTDA)功能:负责将园区、工厂、建筑内的各种能源设备(电表、水表、蒸汽、废气排放传感器等)接入系统,采集原始数据。与数据模型、算法的关系:这是数据源头
如何选择适合自己企业的YashanDB数据库托管服务?
数据库
引言在当前数据驱动的业务环境中,企业面临着许多挑战,例如性能瓶颈、数据一致性问题和大规模数据处理需求等。因此,选择合适的数据库托管服务成为企业成功的关键因素之一。YashanDB作为一款具备高性能与高可用性的数据库系统,为企业提供了灵活的数据库部署和管理选项。然而,不同企业的需求差异化,需要综合考量多方面的因素来选择最适合的托管服务。本文旨在帮助企业在选择YashanDB数据库托管服务时从多角度进
如何通过YashanDB提升数据处理效率
数据库
在如今的数据库技术领域,企业面临着数据处理效率的挑战。这些挑战来源于各种因素,包括性能瓶颈、数据一致性问题以及日益增长的数据量。这些问题不仅影响了数据的处理速度,而且也对决策的实时性提出了更高的要求。因此,选择一个高效的数据库系统显得尤为重要。YashanDB凭借其先进的架构和处理能力,可以有效提升数据处理效率。本文将深入分析YashanDB的关键技术及其如何改善数据处理过程,以及为技术人员提供具
如何通过YashanDB数据库实现企业级数据分区管理?
数据库
在当今大数据时代,企业面临着海量数据的管理和优化访问的问题。如何有效地组织和划分庞大的数据集,以提升查询性能和运维效率,成为数据库系统设计的核心挑战。数据分区技术作为解决大规模数据处理的关键手段,能够显著减少无关数据的访问,优化资源利用率。本文聚焦于YashanDB数据库,详细解析其数据分区管理的实现机制及应用,为企业级应用提供高效、灵活的数据分区解决方案。YashanDB中的数据分区基础Yash
PCL改进的体素滤波器
代码探险狂人
PCL
体素滤波是一种常用的点云数据处理方法,可以用于去除噪声、平滑点云数据以及进行体素化等操作。PCL(点云库)是一个广泛使用的开源库,提供了丰富的点云处理算法和工具。在本文中,我们将介绍如何改进PCL的体素滤波器,并提供相应的源代码。体素滤波器是一种基于体素网格的滤波方法,它将点云数据划分为规则的体素网格,并对每个体素内的点进行处理。传统的体素滤波器在去除噪声和平滑数据方面表现良好,但在一些特定场景下
Python 3.9.0 64位:完整安装与配置教程
D哥有个初二君
本文还有配套的精品资源,点击获取简介:Python3.9.064位安装包为Windows系统上的Python最新版本,特别适用于数据处理、Web开发及自动化脚本等领域。本教程介绍了如何在HarmonyOS开发环境中安装并配置Python3.9.064位版本,包括系统兼容性、下载安装、环境变量配置、安装验证及pip更新。同时提供了Python基础知识,如基础语法、模块导入、面向对象编程、异常处理和文
如何通过YashanDB增强数据处理的灵活性与扩展性?
数据库
在现代数据处理领域,面对海量数据和复杂的查询需求,如何优化数据库系统以提高数据处理的灵活性与扩展性已成为关注的焦点。由于传统的数据库系统往往在处理高并发、复杂查询和动态变化的数据要求时存在性能瓶颈,YashanDB通过其独特的体系架构和功能设计,提供了一系列解决方案。本文将深入分析YashanDB的技术实现,以探讨其如何在动态业务环境中提升数据处理的灵活性与扩展性。YashanDB的体系架构Yas
如何通过YashanDB数据库提升数据处理效率
数据库
在当前数据密集型应用和海量数据处理需求日益增长的背景下,数据库性能瓶颈和数据一致性问题成为普遍挑战。面对业务复杂性和数据量的指数级增长,如何高效存储、调度与处理数据,保障系统的高可用性和扩展性,是数据库技术的重要课题。针对这些挑战,YashanDB作为一款新一代高性能关系型数据库,凭借其多样化部署模式、先进的存储机制和智能优化组件,为数据处理效率的提升提供了系统解决方案。本文将面向数据库设计者、系
通过YashanDB提升大数据处理能力的指南
数据库
数据的急剧增长给数据库技术领域带来了诸多挑战,包括性能瓶颈、数据一致性问题及处理效率低下等。为了应对这些挑战,企业需采取有效的技术手段来提升大数据处理能力。YashanDB作为一款高性能的数据库产品,通过其先进的体系架构、优化的数据存储形式以及强大的并发控制能力,有效地提升了大数据环境下的处理性能。本文旨在为技术人员和决策者提供深入的技术分析和可操作的建议,通过YashanDB的功能特性来实现大数
如何通过YashanDB数据库强化数据安全管理
数据库
引言随着信息技术的不断发展,数据安全管理的问题逐渐显现出其重要性。对于数据库系统来说,安全性不仅仅是防止外部攻击,也包括对内部数据的保护。诸如不当的数据访问、数据泄露以及数据篡改等问题,成为了企业面临的严峻挑战。为此,合理的安全管理制度、控制措施以及规范的数据处理流程变得尤为重要。YashanDB数据库凭借其多层次的安全机制,能够有效地满足用户对于数据安全的需求。本文将详细探讨如何通过Yashan
React对于流式数据和非流式数据的处理和优化
香蕉可乐荷包蛋
React react.js 前端 前端框架
React在处理流式数据和非流式数据时,可以借助其组件模型、状态管理以及React18引入的并发特性来实现高效的数据处理与渲染优化。文章目录一、流式数据(StreamingData)1.定义2.常见来源3.处理方式使用`useState`/`useReducer`管理状态使用`useRef`存储引用(避免重复渲染)自定义Hook封装逻辑使用WebWorker处理复杂计算渲染优化建议二、非流式数据(
PHP安全编程实践系列(四):密码存储与加密技术深度解析
软考和人工智能学堂
# php程序设计经验 php PHP和MySQL php 安全 android
前言密码和数据安全是Web应用最基础的防线。不恰当的密码存储方式或脆弱的加密实现可能导致灾难性的数据泄露。本文将系统性地介绍PHP中的密码安全存储策略、现代加密技术实践以及密钥管理体系,帮助开发者构建真正安全的敏感数据处理方案。一、密码哈希技术1.1密码哈希基础原理安全哈希的核心要求:不可逆性:无法从哈希值恢复原始密码唯一性:相同输入产生相同输出,不同输入产生完全不同输出抗碰撞:难以找到两个不同输
从十六进制字节字符串到UTF-8文本:解码原理与JavaScript实现
在Web开发和数据处理中,我们经常需要处理不同编码格式的数据。本文将深入探讨如何将十六进制表示的UTF-8字节字符串转换为可读的文本内容,并提供一个完整的JavaScript实现方案。一、UTF-8编码基础UTF-8(8-bitUnicodeTransformationFormat)是一种针对Unicode的可变长度字符编码,也是互联网上使用最广泛的一种Unicode编码方式。它有以下特点:兼容A
Java多线程实战指南:从基础到高并发的核心技术解析
添砖Java中
java python 开发语言 spring boot spring cloud spring
一、为什么必须掌握多线程?在单核CPU时代,多线程主要用于提高程序响应速度;在如今的多核处理器时代,多线程已成为榨干硬件性能的必备技能。无论是高并发Web服务器、实时数据处理系统,还是游戏引擎,都离不开多线程技术的支撑。典型案例:电商秒杀系统:1秒内处理10万+请求大数据处理:并行计算TB级数据金融交易系统:毫秒级订单撮合二、线程创建的四大核心方式1.继承Thread类(不推荐)classMyTh
pandas学习笔记
kara_486
pandas 学习 笔记
pandas是python中一个性能强大的数据处理库,能进行复杂的数据处理。pandas的数据结构分为三种类型,分别为series,DataFrame和index,对于初学者而言,series和DataFrame这两种结构最为重要。下面作者将重点介绍series和DataFrame这两部分。series的介绍series按照作者的目前的理解是pandas库中最基础的组成部分,seriers是由索引
Python处理电子表格文件库之pyexcel使用详解
Rocky006
python 开发语言
概要pyexcel是一个功能强大的Python第三方库,专门用于处理各种格式的电子表格文件。核心价值在于提供了统一的接口来读取、写入和操作Excel、CSV、ODS等多种电子表格格式,极大简化了数据处理工作流程。与传统的单一格式处理库不同,pyexcel采用了插件化架构,使开发者能够通过一套API处理所有主流的电子表格格式。不仅支持基础的数据读写操作,还提供了数据转换、格式化、筛选和聚合等高级功能
C++基础之std::map
羊狗狗一只2022年
c++基础 c++
Cartographer中要用到这里,之前都是直接用,了解不深,现在补,这里是纯搬的,手写一遍加深印象,源地址如下:参考std::map容器使用详细说明_学之之博未若知之之要知之之要未若行之之实的博客-CSDN博客_std::map使用概述:Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,由于这个特
java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
电驴链接在线视频播放源码
dubinwei
源码 电驴 播放器 视频 ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
Javascript中函数的toString()方法
周凡杨
JavaScript js toString function object
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
SpringMVC的各种参数绑定方式
Harry642
springMVC 绑定 表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
Java 获取Oracle ROWID
aijuans
java oracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
java获取方法的参数名
antlove
java jdk parameter method reflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java 正则表达式 替换 提取 查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
Java中equals()与hashCode()方法详解
bijian1013
java set equals() hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle 数据库 plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
kafka获得最新partition offset
blackproof
kafka partition offset 最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
[JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件 滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
C语言算法之水仙花数
qiufeihu
c 算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include