spark常见问题汇总

 

摘要:

  1Operation category READ is not supported in state standby

  2、配置spark.deploy.recoveryMode选项为ZOOKEEPER

  3、多Master如何配置

  4No Space Left on the deviceShuffle临时文件过多)

  5java.lang.OutOfMemory, unable to create new native thread

  6Worker节点中的work目录占用许多磁盘空间

  7spark-shell提交Spark Application如何解决依赖库

  8、Spark在发布应用的时候,出现连接不上master问题

  9、开发spark应用程序(和Flume-NG结合时)发布应用时可能出现org.jboss.netty.channel.ChannelException: Failed to bind to: /192.168.10.156:18800

  10spark-shell 找不到hadoop so问题解决

  11、ERROR XSDB6: Another instance of Derby may have already booted the database /home/bdata/data/metastore_db.

  12、java.lang.IllegalArgumentException: java.net.UnknownHostException: dfscluster

  13、Exception in thread "main" java.lang.Exception: When running with master 'yarn-client' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.

  14、Job aborted due to stage failure: Task 3 in stage 0.0 failed 4 times, most recent failure: Lost task 3.3 in

  15、长时间等待无反应,并且看到服务器上面的web界面有内存和核心数,但是没有分配

  16、内存不足或数据倾斜导致Executor Lost(spark-submit提交)

  17、java.io.IOException : Could not locate executable null\bin\winutils.exe in the Hadoop binaries.(spark sql on hive 任务引发HiveContext NullPointerException)

  18、The root scratch dir: /tmp/hive on HDFS should be writable. Current permissions are: rwx------

  19Exception in thread "main" org.apache.hadoop.security.AccessControlException : Permission denied: user=Administrator, access=WRITE, inode="/data":bdata:supergroup:drwxr-xr-x

  20、运行Spark-SQL报错:org.apache.spark.sql.AnalysisException: unresolved operator 'Project‘

  21、org.apache.spark.shuffle.MetadataFetchFailedException:Missing an output location for shuffle 0/Failed to connect to hostname/192.168.xx.xxx:50268

  22、spark error already tried 45 time(s); maxRetries=45

  23.cloudera 更改spark高级配置

  24、spark Exception in thread "Thread-2" java.lang.OutOfMemoryError: PermGen space 

25.org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [10 seconds]. This timeout is controlled by spark.executor.heartbeatInterval

 

注意:如果Driver写好了代码,eclipse或者程序上传后,没有开始处理数据,或者快速结束任务,也没有在控制台中打印错误,那么请进入spark的web页面,查看一下你的任务,找到每个分区日志的stderr,查看是否有错误,一般情况下一旦驱动提交了,报错的情况只能在任务日志里面查看是否有错误情况了

26.

Job aborted due to stage failure: Task 102 in stage 8168.0 failed 4 times, most recent failure: Lost task 102.3 in stage 8168.0 (TID 2980073, dn142): java.io.FileNotFoundException: /data2/hadoop/yarn/local/usercache/jxw/appcache/application_1559806458019_451132/blockmgr-39d26e40-acd7-4238-9ac7-8d4cdfe1787e/0c/temp_shuffle_b97edfb2-28f0-4271-8c23-891d0fdbd32c (Input/output error)
	at java.io.FileOutputStream.open0(Native Method)
	at java.io.FileOutputStream.open(FileOutputStream.java:270)
	at java.io.FileOutputStream.(FileOutputStream.java:213)
	at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:88)
	at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:140)
	at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
	at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
	at org.apache.spark.scheduler.Task.run(Task.scala:89)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)
解答:该问题是磁盘坏了

1Operation category READ is not supported in state standby

     org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.ipc.StandbyException): Operation category READ is not supported in state standby

     此时请登录Hadoop的管理界面查看运行节点是否处于standby

如登录地址是:

http://192.168.50.221:50070/dfshealth.html#tab-overview

     如果是,则不可在处于StandBy机器运行spark计算,因为该台机器为备分机器

 

2、配置spark.deploy.recoveryMode选项为ZOOKEEPER

     如果不设置spark.deploy.recoveryMode的话,那么集群的所有运行数据在Master重启是都会丢失,可参考BlackHolePersistenceEngine的实现。

 

3、多Master如何配置

     因为涉及到多个Master,所以对于应用程序的提交就有了一点变化,因为应用程序需要知道当前的Master的IP地址和端口。这种HA方案处理这种情况很简单,只需要在SparkContext指向一个Master列表就可以了,如spark://host1:port1,host2:port2,host3:port3,应用程序会轮询列表。

 

4No Space Left on the deviceShuffle临时文件过多)

         由于Spark在计算的时候会将中间结果存储到/tmp目录,而目前linux又都支持tmpfs,其实就是将/tmp目录挂载到内存当中。

那么这里就存在一个问题,中间结果过多导致/tmp目录写满而出现如下错误

No Space Left on the device

解决办法

第一种:修改配置文件spark-env.sh,把临时文件引入到一个自定义的目录中去即可

export SPARK_LOCAL_DIRS=/home/utoken/datadir/spark/tmp

第二种:偷懒方式,针对tmp目录不启用tmpfs,直接修改/etc/fstab

 

cloudera manager 添加参数配置:筛选器=>高级=>搜索“spark_env”字样,添加参数export SPARK_LOCAL_DIRS=/home/utoken/datadir/spark/tmp到所有配置项

5java.lang.OutOfMemory, unable to create new native thread

Caused by: java.lang.OutOfMemoryError: unable to create new native thread

at java.lang.Thread.start0(Native Method)

at java.lang.Thread.start(Thread.java:640)

上面这段错误提示的本质是Linux操作系统无法创建更多进程,导致出错,并不是系统的内存不足。因此要解决这个问题需要修改Linux允许创建更多的进程,就需要修改Linux最大进程数。

[utoken@nn1 ~]$ulimit -a

临时修改允许打开的最大进程数

[utoken@nn1 ~]$ulimit -u 65535

临时修改允许打开的文件句柄

[utoken@nn1 ~]$ulimit -n 65535

永久修改Linux最大进程数量

[utoken@nn1 ~]$ vim /etc/security/limits.d/90-nproc.conf

*          soft    nproc     60000

root       soft    nproc     unlimited

永久修改用户打开文件的最大句柄数,该值默认1024,一般都会不够,常见错误就是not open file

[utoken@nn1 ~]$ vim /etc/security/limits.conf

bdata  soft    nofile  65536

bdata  hard    nofile  65536

 

6Worker节点中的work目录占用许多磁盘空间

目录地址:/home/utoken/software/spark-1.3.0-bin-hadoop2.4/work

这些是Driver上传到worker的文件,需要定时做手工清理,否则会占用许多磁盘空间 

 

7spark-shell提交Spark Application如何解决依赖库

spark-shell的话,利用--driver-class-path选项来指定所依赖的jar文件,注意的是--driver-class-path后如果需要跟着多个jar文件的话,jar文件之间使用冒号(:)来分割。

 

8、Spark在发布应用的时候,出现连接不上master问题,如下

15/11/19 11:35:50 INFO AppClient$ClientEndpoint: Connecting to master spark://s1:7077...

15/11/19 11:35:50 WARN ReliableDeliverySupervisor: Association with remote system [akka.tcp://sparkMaster@s1:7077] has failed, address is now gated for [5000] ms. Reason: [Disassociated]

解决方式

检查所有机器时间是否一致、hosts是否都配置了映射、客户端和服务器端的Scala版本是否一致、Scala版本是否和Spark兼容

检查是否兼容问题请参考官方网站介绍:

 

9、开发spark应用程序(和Flume-NG结合时)发布应用时可能出现org.jboss.netty.channel.ChannelException: Failed to bind to: /192.168.10.156:18800

15/11/27 10:33:44 ERROR ReceiverSupervisorImpl: Stopped receiver with error: org.jboss.netty.channel.ChannelException: Failed to bind to: /192.168.10.156:18800
15/11/27 10:33:44 ERROR Executor: Exception in task 0.0 in stage 2.0 (TID 70)
org.jboss.netty.channel.ChannelException: Failed to bind to: /192.168.10.156:18800

        at org.jboss.netty.bootstrap.ServerBootstrap.bind(ServerBootstrap.java:272)

Caused by: java.net.BindException: Cannot assign requested address

 

 

由于spark通过Master发布的时候,会自动选取发送到某一台的worker节点上,所以这里绑定端口的时候,需要选择相应的worker服务器,但是由于我们无法事先了解到,spark发布到哪一台服务器的,所以这里启动报错,是因为在 192.168.10.156:18800的机器上面没有启动Driver程序,而是发布到了其他服务器去启动了,所以无法监听到该机器出现问题,所以我们需要设置spark分发包时,发布到所有worker节点机器,或者发布后,我们去寻找发布到了哪一台机器,重新修改绑定IP,重新发布,有一定几率发布成功。详情可见《印象笔记-战5渣系列——Spark Streaming启动问题 - 推酷》

 

10spark-shell 找不到hadoop so问题解决

[main] WARN  org.apache.hadoop.util.NativeCodeLoader  - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

在Spark的conf目录下,修改spark-env.sh文件,加入LD_LIBRARY_PATH环境变量,值为HADOOP的native库路径即可.

 

11、ERROR XSDB6: Another instance of Derby may have already booted the database /home/bdata/data/metastore_db.

在使用Hive on Spark模式操作hive里面的数据时,报以上错误,原因是因为HIVE采用了derby这个内嵌数据库作为数据库,它不支持多用户同时访问,解决办法就是把derby数据库换成mysql数据库即可

变更方式

 

12、java.lang.IllegalArgumentException: java.net.UnknownHostException: dfscluster

解决办法:

找不到hdfs集群名字dfscluster,这个文件在HADOOP的etc/hadoop下面,有个文件hdfs-site.xml,复制到Spark的conf下,重启即可

如:执行脚本,分发到所有的Spark集群机器中,

[bdata@bdata4 hadoop]foriin34,35,36,37,38;doscphdfs−site.xml192.168.10.foriin34,35,36,37,38;doscphdfs−site.xml192.168.10.i:/u01/spark-1.5.1/conf/ ; done

 

13、Exception in thread "main" java.lang.Exception: When running with master 'yarn-client' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.

问题:在执行yarn集群或者客户端时,报以上错误,

[bdata@bdata4 bin]$ ./spark-sql --master yarn-client

Exception in thread "main" java.lang.Exception: When running with master 'yarn-client' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment.

解决办法

根据提示,配置HADOOP_CONF_DIR or YARN_CONF_DIR的环境变量即可

export HADOOP_HOME=/u01/hadoop-2.6.1

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

PATH=PATH:PATH:HOME/.local/bin:HOME/bin:HOME/bin:SQOOP_HOME/bin:HIVEHOME/bin:HIVEHOME/bin:HADOOP_HOME/bin

14、Job aborted due to stage failure: Task 3 in stage 0.0 failed 4 times, most recent failure: Lost task 3.3 in

[Stage 0:>                                                         (0 + 4) / 42]2016-01-15 11:28:16,512 [org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 0 on 192.168.10.38: remote Rpc client disassociated

[Stage 0:>                                                         (0 + 4) / 42]2016-01-15 11:28:23,188 [org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 1 on 192.168.10.38: remote Rpc client disassociated

[Stage 0:>                                                         (0 + 4) / 42]2016-01-15 11:28:29,203 [org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 2 on 192.168.10.38: remote Rpc client disassociated

[Stage 0:>                                                         (0 + 4) / 42]2016-01-15 11:28:36,319 [org.apache.spark.scheduler.TaskSchedulerImpl]-[ERROR] Lost executor 3 on 192.168.10.38: remote Rpc client disassociated

2016-01-15 11:28:36,321 [org.apache.spark.scheduler.TaskSetManager]-[ERROR] Task 3 in stage 0.0 failed 4 times; aborting job

Exception in thread "main" org.apache.spark.SparkException : Job aborted due to stage failure: Task 3 in stage 0.0 failed 4 times, most recent failure: Lost task 3.3 in stage 0.0 (TID 14, 192.168.10.38): ExecutorLostFailure (executor 3 lost)

Driver stacktrace:

      at org.apache.spark.scheduler.DAGScheduler.orgapacheapachesparkschedulerschedulerDAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283)

解决方案

这里遇到的问题主要是因为数据源数据量过大,而机器的内存无法满足需求,导致长时间执行超时断开的情况,数据无法有效进行交互计算,因此有必要增加内存

 

15、长时间等待无反应,并且看到服务器上面的web界面有内存和核心数,但是没有分配,如下图

[Stage 0:>                                                         (0 + 0) / 42]

或者日志信息显示:

16/01/15 14:18:56 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources

 

解决方案

出现上面的问题主要原因是因为我们通过参数spark.executor.memory设置的内存过大,已经超过了实际机器拥有的内存,故无法执行,需要等待机器拥有足够的内存后,才能执行任务,可以减少任务执行内存,设置小一些即可

 

 

16、内存不足或数据倾斜导致Executor Lost(spark-submit提交)

TaskSetManager: Lost task 1.0 in stage 6.0 (TID 100, 192.168.10.37): java.lang.OutOfMemoryError: Java heap space

16/01/15 14:29:51 INFO BlockManagerInfo: Added broadcast_8_piece0 in memory on 192.168.10.37:57139 (size: 42.0 KB, free: 24.2 MB)

16/01/15 14:29:53 INFO BlockManagerInfo: Added broadcast_8_piece0 in memory on 192.168.10.38:53816 (size: 42.0 KB, free: 24.2 MB)
16/01/15 14:29:55 INFO TaskSetManager: Starting task 3.0 in stage 6.0 (TID 102, 192.168.10.37, ANY, 2152 bytes)
16/01/15 14:29:55 WARN TaskSetManager: Lost task 1.0 in stage 6.0 (TID 100, 192.168.10.37): java.lang.OutOfMemoryError: Java heap space
        at java.io.BufferedOutputStream.(BufferedOutputStream.java:76)
        at java.io.BufferedOutputStream.(BufferedOutputStream.java:59)
        at org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$2.(UnsafeRowSerializer.scala:55)
        at org.apache.spark.sql.execution.UnsafeRowSerializerInstance.serializeStream(UnsafeRowSerializer.scala:52)
        at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:92)
        at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.insertAll(BypassMergeSortShuffleWriter.java:110)
        at org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:73)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
        at org.apache.spark.scheduler.Task.run(Task.scala:88)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:744)

16/01/15 14:29:55 ERROR TaskSchedulerImpl: Lost executor 6 on 192.168.10.37: remote Rpc client disassociated
16/01/15 14:29:55 INFO TaskSetManager: Re-queueing tasks for 6 from TaskSet 6.0
16/01/15 14:29:55 WARN ReliableDeliverySupervisor: Association with remote system [akka.tcp://[email protected]:42250] has failed, address is now gated for [5000] ms. Reason: [Disassociated]

16/01/15 14:29:55 WARN TaskSetManager: Lost task 3.0 in stage 6.0 (TID 102, 192.168.10.37): ExecutorLostFailure (executor 6 lost)

16/01/15 14:29:55 INFO DAGScheduler: Executor lost: 6 (epoch 8)
16/01/15 14:29:55 INFO BlockManagerMasterEndpoint: Trying to remove executor 6 from BlockManagerMaster.
16/01/15 14:29:55 INFO BlockManagerMasterEndpoint: Removing block manager BlockManagerId(6, 192.168.10.37, 57139)
16/01/15 14:29:55 INFO BlockManagerMaster: Removed 6 successfully in removeExecutor
16/01/15 14:29:55 INFO AppClient$ClientEndpoint: Executor updated: app-20160115142128-0001/6 is now EXITED (Command exited with code 52)
16/01/15 14:29:55 INFO SparkDeploySchedulerBackend: Executor app-20160115142128-0001/6 removed: Command exited with code 52

16/01/15 14:29:55 INFO SparkDeploySchedulerBackend: Asked to remove non-existent executor 6

.......

org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 6.0 failed 4 times, most recent failure: Lost task 0.3 in stage 6.0 (TID 142, 192.168.10.36): ExecutorLostFailure (executor 4 lost)

......

WARN TaskSetManager: Lost task 4.1 in stage 6.0 (TID 137, 192.168.10.38): java.lang.OutOfMemoryError: GC overhead limit exceeded

解决办法:

     由于我们在执行Spark任务是,读取所需要的原数据,数据量太大,导致在Worker上面分配的任务执行数据时所需要的内存不够,直接导致内存溢出了,所以我们有必要增加Worker上面的内存来满足程序运行需要。

在Spark Streaming或者其他spark任务中,会遇到在Spark中常见的问题,典型如Executor Lost 相关的问题(shuffle fetch 失败,Task失败重试等)。这就意味着发生了内存不足或者数据倾斜的问题。这个目前需要考虑如下几个点以获得解决方案:

A、相同资源下,增加partition数可以减少内存问题。 原因如下:通过增加partition数,每个task要处理的数据少了,同一时间内,所有正在运行的task要处理的数量少了很多,所有Executor占用的内存也变小了。这可以缓解数据倾斜以及内存不足的压力。

B、关注shuffle read 阶段的并行数。例如reduce,group 之类的函数,其实他们都有第二个参数,并行度(partition数),只是大家一般都不设置。不过出了问题再设置一下,也不错。

C、给一个Executor 核数设置的太多,也就意味着同一时刻,在该Executor 的内存压力会更大,GC也会更频繁。我一般会控制在3个左右。然后通过提高Executor数量来保持资源的总量不变。

 

16、 Spark Streaming 和kafka整合后读取消息报错:OffsetOutOfRangeException

解决方案:如果和kafka消息中间件结合使用,请检查消息体是否大于默认设置1m,如果大于,则需要设置fetch.message.max.bytes=1m,这里需要把值设置大些

 

17、java.io.IOException : Could not locate executable null\bin\winutils.exe in the Hadoop binaries.(spark sql on hive 任务引发HiveContext NullPointerException)

解决办法

在开发hive和Spark整合的时候,如果是Windows系统,并且没有配置HADOOP_HOME的环境变量,那么可能找不到winutils.exe这个工具,由于使用hive时,对该命令有依赖,所以不要忽视该错误,否则将无法创建HiveContext,一直报Exception in thread "main" java.lang.RuntimeException:java.lang.NullPointerException

因此,解决该办法有两个方式

A、把任务打包成jar,上传到服务器上面,服务器是配置过HADOOP_HOME环境变量的,并且不需要依赖winutils,所以只需要通过spark-submit方式提交即可,如:

[bdata@bdata4 app]$ spark-submit --class com.pride.hive.HiveOnSparkTest --master spark://bdata4:7077 spark-simple-1.0.jar

 

B、解决winutils.exe命令不可用问题,配置Windows上面HADOOP_HOME的环境变量,或者在程序最开始的地方设置HADOOP_HOME的属性配置,这里需要注意,由于最新版本已经没有winutils这些exe命令了,我们需要在其他地方下载该命令放入HADOOP的bin目录下,当然也可以直接配置下载项目的环境变量,变量名一定要是HADOOP_HOME才行

下载地址:https://github.com/srccodes/hadoop-common-2.2.0-bin/archive/master.zip (记得FQ哦)

任何项目都生效,需要配置Windows的环境变量,如果只在程序中生效可在程序中配置即可,如

//用于解决Windows下找不到winutils.exe命令

System. setProperty("hadoop.home.dir", "E:\\Software\\hadoop-common-2.2.0-bin" );

 

18、The root scratch dir: /tmp/hive on HDFS should be writable. Current permissions are: rwx------

解决办法

1、程序中设置环境变量:System.setProperty("HADOOP_USER_NAME", "bdata")

2、修改HDFS的目录权限

Update the permission of your /tmp/hive HDFS directory using the following command

#hadoop dfs -chmod 777 /tmp/hive

此问题暂未解决,估计是17点解决winutils有问题,建议最好把任务程序发布到服务器上面解决

 

19Exception in thread "main" org.apache.hadoop.security.AccessControlException : Permission denied: user=Administrator, access=WRITE, inode="/data":bdata:supergroup:drwxr-xr-x

 

解决办法

1、在系统的环境变量或java JVM变量里面添加HADOOP_USER_NAME,如程序中添加System.setProperty("HADOOP_USER_NAME", "bdata");,这里的值就是以后会运行HADOOP上的Linux的用户名,如果是eclipse,则修改完重启eclipse,不然可能不生效

2、hdfs dfs -chmod 777 修改相应权限地址

 

20、运行Spark-SQL报错:org.apache.spark.sql.AnalysisException: unresolved operator 'Project

解决办法:

在Spark-sql和hive结合时或者单独Spark-sql,运行某些sql语句时,偶尔出现上面错误,那么我们可以检查一下sql的问题,这里遇到的问题是嵌套语句太多,导致spark无法解析,所以需要修改sql或者改用其他方式处理;特别注意该语句可能在hive里面没有错误,spark才会出现的一种错误。

21、org.apache.spark.shuffle.MetadataFetchFailedException:Missing an output location for shuffle 0/Failed to connect to hostname/192.168.xx.xxx:50268

解决方法:

1.优化shuffle操作(比如groupby,join)

2.加大executor内存(spark.executor.memory)

3.加大并行化参数(spark.default.parallelism)

参考链接:

http://blog.csdn.net/lsshlsw/article/details/49155087

22、spark error already tried 45 time(s); maxRetries=45

场景描述:spark提交任务,发现9个节点用8个运行都很快,只有一个节点一直失败,查看ui页面也没有发现数据倾斜
问题定位:通过查看节点的work日志发现如下输出:

spark常见问题汇总_第1张图片

问题解决:修改spark的最大重试参数:spark.port.maxRetries 值从45=>16

 

23.cloudera 更改spark高级配置:

业务场景:在使用cloudera  manager搭建spark集群的过程中总是有些参数在配置界面中搜索不到

问题解决:集群=>配置=>高级,找到右侧的显示所有说明,找到你要修改的配置文件就可以了

spark常见问题汇总_第2张图片spark常见问题汇总_第3张图片

 

24.Exception in thread "Thread-2" java.lang.OutOfMemoryError: PermGen space

问题原因:在JVM中,PermGen用于保存加载的类,yarn Client模式的持久代默认大小是32M;

解决方案:spark-submit时增加如下参数:“--driver-java-options -XX:MaxPermSize=256m"

25.org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [10 seconds]. This timeout is controlled by spark.executor.heartbeatInterval

 

spark常见问题汇总_第4张图片

 

解决方案:

  分配的core不够, 多分配几核的CPU

25.pyspark TypeError: 'JavaPackage' object is not callable

场景:pyspark使用py4j调用java对象ALS,这里有兴趣同学可以根据报错去跟读源码

spark常见问题汇总_第5张图片

问题原因:运行时找不到ALS类,也即没有spark-mllib包

解决方案:spark-submit时添加如下参数“--jars /path/to/spark-mllib_scala.version−scala.version−{spark.version}.jar”

 

26、spark als StackOverflowError

场景:

als = ALS(maxIter=15, rank=rank, regParam=0.01, userCol="userId", itemCol="itemId", ratingCol="rating")

model = als.fit(ratings)

解决方案:

一般情况下ALS收敛是非常快的,将iteration设置为<30的数字就可以了,绝大多数情况下,设置为15就行。次数过多的情况下就会出现:java.lang.StackOverflowError。当然,也可也通过设置checkpoint来解决。

spark.sparkContext.setCheckpointDir("/tmp/als_checkpoint")

als = ALS(maxIter=numIterations, rank=rank, regParam=0.01, userCol="userId", itemCol="itemId", ratingCol="rating",checkpointInterval=2)

model = als.fit(ratings)

 

你可能感兴趣的:(spark常见问题汇总)