机器学习 - 集成学习

1. bagging

bagging的核心思想: bootstrap sample自主采样;即从m个样本的数据集中有放回的随机采样n(n ≤ m)个样本;这样重复k次,将得到k个不同的数据集作为训练数据。


随机森林:随机森林是bagging的经典应用;随机森林相对于bagging更加高级,不但可以对样本进行bootstrap sampling,而且可以对特征进行bootstrap;从而形成拥有多个决策树的森林。


优点:并行集成化容易; 降低模型方差; 抗过拟合能力强。

# -*- coding: utf-8 -*-
""" 利用sklearn来实现bagging """
from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier


def load_data():
    pass


def bagging(train_x, train_y, test):
    """ bagging """
    clf = KNeighborsClassifier(n_neighbors=15)
    bagging_clf = BaggingClassifier(clf, n_estimators=50, max_samples=0.9, max_features=0.9, 
                                    bootstrap=True, bootstrap_features=True, n_jobs=1, random_state=1)
    bagging_clf.fit(train_x, train_y)
    prediction = bagging_clf.predict(test)
    return prediction


def main():
    (train_x, train_y, test) = load_data()
    prediction = bagging(train_x, train_y, test)
    return prediction

if __name__ == "__main__":
    prediction = main()

2. boosting

boosting的核心思想:调整样本分布。

boosting的过程:预测,改变样本分布;预测,改变样本分布;...;加权融合。

机器学习 - 集成学习_第1张图片

左边的条形图象征着样本分布的改变,三角连接为分类结果融合的权值。


优点 & 缺点: 深度学习之前的屠龙刀,精度高;但是容易过拟合,并行化难以实现。


3. stacking

stacking的核心:在训练集上进行预测,从而构建更高层的学习器

3.1 stacking训练过程

1) 拆解训练集。将训练数据随机且大致均匀的拆为m份

2)在拆解后的训练集上训练模型,同时在测试集上预测。利用m-1份训练数据进行训练,预测剩余一份;在此过程进行的同时,利用相同的m-1份数据训练,在真正的测试集上预测;如此重复m次,将训练集上m次结果叠加为1列,将测试集上m次结果取均值融合为1列。

3)使用k个分类器重复2过程。将分别得到k列训练集的预测结果,k列测试集预测结果。

4)训练3过程得到的数据。将k列训练集预测结果和训练集真实label进行训练,将k列测试集预测结果作为测试集。

# -*- coding: utf-8 -*-
import numpy as np 
from sklearn.model_selection import StratifiedKFold
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
import xgboost as xgb
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.linear_model import LogisticRegression


def load_data():
    pass


def stacking(train_x, train_y, test):
    """ stacking
    input: train_x, train_y, test
    output: test的预测值
    clfs: 5个一级分类器
    dataset_blend_train: 一级分类器的prediction, 二级分类器的train_x
    dataset_blend_test: 二级分类器的test
    """
    # 5个一级分类器
    clfs = [SVC(C = 3, kernel="rbf"),
            RandomForestClassifier(n_estimators=100, max_features="log2", max_depth=10, min_samples_leaf=1, bootstrap=True, n_jobs=-1, random_state=1),
            KNeighborsClassifier(n_neighbors=15, n_jobs=-1),
            xgb.XGBClassifier(n_estimators=100, objective="binary:logistic", gamma=1, max_depth=10, subsample=0.8, nthread=-1, seed=1),
            ExtraTreesClassifier(n_estimators=100, criterion="gini", max_features="log2", max_depth=10, min_samples_split=2, min_samples_leaf=1,bootstrap=True, n_jobs=-1, random_state=1)]
    
    # 二级分类器的train_x, test
    dataset_blend_train = np.zeros((train_x.shape[0], len(clfs)), dtype=np.int)
    dataset_blend_test = np.zeros((test.shape[0], len(clfs)), dtype=np.int)
    
    # 5个分类器进行8_folds预测
    n_folds = 8
    skf = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=1)
    for i,clf in enumerate(clfs):
        dataset_blend_test_j = np.zeros((test.shape[0], n_folds))  # 每个分类器的单次fold预测结果
        for j,(train_index,test_index) in enumerate(skf.split(train_x, train_y)):
            tr_x = train_x[train_index]
            tr_y = train_y[train_index]
            clf.fit(tr_x, tr_y)
            dataset_blend_train[test_index, i] = clf.predict(train_x[test_index])
            dataset_blend_test_j[:, j] = clf.predict(test)
        dataset_blend_test[:, i] = dataset_blend_test_j.sum(axis=1) // (n_folds//2 + 1)
    
    # 二级分类器进行预测
    clf = LogisticRegression(penalty="l1", tol=1e-6, C=1.0, random_state=1, n_jobs=-1)
    clf.fit(dataset_blend_train, train_y)
    prediction = clf.predict(dataset_blend_test)
    return prediction


def main():
    (train_x, train_y, test) = load_data()
    prediction = stacking(train_x, train_y, test)
    return prediction
    

if __name__ == "__main__":
    prediction = main()

你可能感兴趣的:(机器学习,机器学习,数据挖掘,机器学习与数据挖掘)