李航,统计学习方法-感知机原理剖析及实现

统计学习方法|感知机原理剖析及实现

 代码写思路很清晰,膜拜下

import numpy as np
import time

def loadData(fileName):
    '''
    加载Mnist数据集
    :param fileName:要加载的数据集路径
    :return: list形式的数据集及标记
    '''
    print('start to read data')
    # 存放数据及标记的list
    dataArr = []; labelArr = []
    # 打开文件
    fr = open(fileName, 'r')
    # 将文件按行读取
    for line in fr.readlines():
        # 对每一行数据按切割福','进行切割,返回字段列表
        curLine = line.strip().split(',')

        # Mnsit有0-9是个标记,由于是二分类任务,所以将>=5的作为1,<5为-1
        if int(curLine[0]) >= 5:
            labelArr.append(1)
        else:
            labelArr.append(-1)
        #存放标记
        #[int(num) for num in curLine[1:]] -> 遍历每一行中除了以第一哥元素(标记)外将所有元素转换成int类型
        #[int(num)/255 for num in curLine[1:]] -> 将所有数据除255归一化(非必须步骤,可以不归一化)
        dataArr.append([int(num)/255 for num in curLine[1:]])

    #返回data和label
    return dataArr, labelArr

def perceptron(dataArr, labelArr, iter=50):
    '''
    感知器训练过程
    :param dataArr:训练集的数据 (list)
    :param labelArr: 训练集的标签(list)
    :param iter: 迭代次数,默认50
    :return: 训练好的w和b
    '''
    print('start to trans')
    #将数据转换成矩阵形式(在机器学习中因为通常都是向量的运算,转换称矩阵形式方便运算)
    #转换后的数据中每一个样本的向量都是横向的
    dataMat = np.mat(dataArr)
    #将标签转换成矩阵,之后转置(.T为转置)。
    #转置是因为在运算中需要单独取label中的某一个元素,如果是1xN的矩阵的话,无法用label[i]的方式读取
    #对于只有1xN的label可以不转换成矩阵,直接label[i]即可,这里转换是为了格式上的统一
    labelMat = np.mat(labelArr).T
    #获取数据矩阵的大小,为m*n
    m, n = np.shape(dataMat)
    #创建初始权重w,初始值全为0。
    #np.shape(dataMat)的返回值为m,n -> np.shape(dataMat)[1])的值即为n,与
    #样本长度保持一致
    w = np.zeros((1, np.shape(dataMat)[1]))
    #初始化偏置b为0
    b = 0
    #初始化步长,也就是梯度下降过程中的n,控制梯度下降速率
    h = 0.0001

    #进行iter次迭代计算
    for k in range(iter):
        #对于每一个样本进行梯度下降
        #李航书中在2.3.1开头部分使用的梯度下降,是全部样本都算一遍以后,统一
        #进行一次梯度下降
        #在2.3.1的后半部分可以看到(例如公式2.6 2.7),求和符号没有了,此时用
        #的是随机梯度下降,即计算一个样本就针对该样本进行一次梯度下降。
        #两者的差异各有千秋,但较为常用的是随机梯度下降。
        for i in range(m):
            #获取当前样本的向量
            xi = dataMat[i]
            #获取当前样本所对应的标签
            yi = labelMat[i]
            #判断是否是误分类样本
            #误分类样本特诊为: -yi(w*xi+b)>=0,详细可参考书中2.2.2小节
            #在书的公式中写的是>0,实际上如果=0,说明改点在超平面上,也是不正确的
            if -1 * yi * (w * xi.T + b) >= 0:
                #对于误分类样本,进行梯度下降,更新w和b
                w = w + h *  yi * xi
                b = b + h * yi
        #打印训练进度
        print('Round %d:%d training' % (k, iter))

    #返回训练完的w、b
    return w, b


def test(dataArr, labelArr, w, b):
    '''
    测试准确率
    :param dataArr:测试集
    :param labelArr: 测试集标签
    :param w: 训练获得的权重w
    :param b: 训练获得的偏置b
    :return: 正确率
    '''
    print('start to test')
    #将数据集转换为矩阵形式方便运算
    dataMat = np.mat(dataArr)
    #将label转换为矩阵并转置,详细信息参考上文perceptron中
    #对于这部分的解说
    labelMat = np.mat(labelArr).T

    #获取测试数据集矩阵的大小
    m, n = np.shape(dataMat)
    #错误样本数计数
    errorCnt = 0
    #遍历所有测试样本
    for i in range(m):
        #获得单个样本向量
        xi = dataMat[i]
        #获得该样本标记
        yi = labelMat[i]
        #获得运算结果
        result = -1 * yi * (w * xi.T + b)
        #如果-yi(w*xi+b)>=0,说明该样本被误分类,错误样本数加一
        if result >= 0: errorCnt += 1
    #正确率 = 1 - (样本分类错误数 / 样本总数)
    accruRate = 1 - (errorCnt / m)
    #返回正确率
    return accruRate

if __name__ == '__main__':
    #获取当前时间
    #在文末同样获取当前时间,两时间差即为程序运行时间
    start = time.time()

    #获取训练集及标签
    trainData, trainLabel = loadData('../Mnist/mnist_train.csv')
    #获取测试集及标签
    testData, testLabel = loadData('../Mnist/mnist_test.csv')

    #训练获得权重
    w, b = perceptron(trainData, trainLabel, iter = 30)
    #进行测试,获得正确率
    accruRate = test(testData, testLabel, w, b)

    #获取当前时间,作为结束时间
    end = time.time()
    #显示正确率
    print('accuracy rate is:', accruRate)
    #显示用时时长
    print('time span:', end - start)

 

 

你可能感兴趣的:(机器学习)