PyTorch1.0安装教程(附三个测试示例)

Summary:Python1.0安装教程

Author:Amusi

Date:2018-12-20

github:https://github.com/amusi/PyTorch-From-Zero-To-One

知乎:https://www.zhihu.com/people/amusi1994

微信公众号:CVer

本文是在Ubuntu下进行PyTorch1.0正式版的安装,Windows安装教程与之类似,也可以参考该教程进行安装:https://blog.csdn.net/amusi1994/article/details/80077667

环境说明

  • OS:Ubuntu16.04
  • CUDA:8.0
  • cudnn:6.0
  • Python(conda):3.6.4

安装教程

官网:https://pytorch.org/

检查Python环境

PyTorch1.0安装教程(附三个测试示例)_第1张图片

根据当前系统环境点击选项

PyTorch1.0安装教程(附三个测试示例)_第2张图片

在终端输入匹配的安装PyTorch1.0的命令

conda install pytorch torchvision cuda80 -c pytorch

回车进行安装,此时会有如下提示,当搜索到PyTorch1.0的相关packages时,输入 y,确定继续安装。

注:此时可能会找不到相应的packages,比如Windows环境下。所以你可以添加相关的搜索源,如清华的源。此处可以自行百度解决。

PyTorch1.0安装教程(附三个测试示例)_第3张图片

此时需要等待一会儿(具体看网速),因为PyTorch 1.0.0这个packages有437.5 MB大小。

PyTorch1.0安装教程(附三个测试示例)_第4张图片

安装成功后,会提示done。

PyTorch1.0安装教程(附三个测试示例)_第5张图片

加载PyTorch并输出版本号,验证是否安装成功。

python
import torch
print(torch.__version__)

PyTorch1.0安装教程(附三个测试示例)_第6张图片

测试示例

测试1:检查CUDA和CUDNN

创建并打开新的脚本文件pytorch_cudn_cudnn_test.py

touch pytorch_cudn_cudnn_test.py
gedit pytorch_cudn_cudnn_test.py 

写入测试代码

# Summary: 检测当前Pytorch和设备是否支持CUDA和cudnn
# Author:  Amusi
# Date:    2018-12-20 
# github:  https://github.com/amusi/PyTorch-From-Zero-To-One

import torch
 
if __name__ == '__main__':
	print("Support CUDA ?: ", torch.cuda.is_available())
	x = torch.Tensor([1.0])
	xx = x.cuda()
	print(xx)
 
	y = torch.randn(2, 3)
	yy = y.cuda()
	print(yy)
 
	zz = xx + yy
	print(zz)
 
	# CUDNN TEST
	from torch.backends import cudnn
	print("Support cudnn ?: ",cudnn.is_acceptable(xx))

运行该测试代码

python pytorch_cudn_cudnn_test.py

输入结果如下:

PyTorch1.0安装教程(附三个测试示例)_第7张图片

测试2:Tensors

创建并打开新的脚本文件pytorch_tensors.py

touch pytorch_tensors.py
gedit pytorch_tensors.py

写入测试代码:

# Summary:PyTorch的Tensor基础知识
# Author:  Amusi
# Date:    2018-12-20 
# github:  https://github.com/amusi/PyTorch-From-Zero-To-One
# Reference: http://pytorch.org/tutorials/beginner/pytorch_with_examples.html#pytorch-tensors
 
import torch
 
dtype = torch.FloatTensor
# dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU
 
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
 
# Create random input and output data
x = torch.randn(N, D_in).type(dtype)
y = torch.randn(N, D_out).type(dtype)
 
# Randomly initialize weights
w1 = torch.randn(D_in, H).type(dtype)
w2 = torch.randn(H, D_out).type(dtype)
 
learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
 
    # Compute and print loss
    loss = (y_pred - y).pow(2).sum()
    print(t, loss)
 
    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)
 
    # Update weights using gradient descent
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

运行该测试代码

python pytorch_tensors.py

输入结果如下:

PyTorch1.0安装教程(附三个测试示例)_第8张图片

测试3:MNIST

创建并打开新的脚本文件pytorch_mnist.py

touch pytorch_mnist.py
gedit pytorch_mnist.py

写入测试代码:

# Summary: 使用PyTorch玩转MNIST 
# Author:  Amusi
# Date:    2018-12-20 
# github:  https://github.com/amusi/PyTorch-From-Zero-To-One
# Reference: https://blog.csdn.net/victoriaw/article/details/72354307
 
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
 
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                    help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                    help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
                    help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                    help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                    help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
                    help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                    help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
 
torch.manual_seed(args.seed) #为CPU设置种子用于生成随机数,以使得结果是确定的
if args.cuda:
    torch.cuda.manual_seed(args.seed)#为当前GPU设置随机种子;如果使用多个GPU,应该使用torch.cuda.manual_seed_all()为所有的GPU设置种子。
 
 
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
"""加载数据。组合数据集和采样器,提供数据上的单或多进程迭代器
参数:
dataset:Dataset类型,从其中加载数据
batch_size:int,可选。每个batch加载多少样本
shuffle:bool,可选。为True时表示每个epoch都对数据进行洗牌
sampler:Sampler,可选。从数据集中采样样本的方法。
num_workers:int,可选。加载数据时使用多少子进程。默认值为0,表示在主进程中加载数据。
collate_fn:callable,可选。
pin_memory:bool,可选
drop_last:bool,可选。True表示如果最后剩下不完全的batch,丢弃。False表示不丢弃。
"""
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=args.batch_size, shuffle=True, **kwargs)
 
 
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)#输入和输出通道数分别为1和10
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)#输入和输出通道数分别为10和20
        self.conv2_drop = nn.Dropout2d()#随机选择输入的信道,将其设为0
        self.fc1 = nn.Linear(320, 50)#输入的向量大小和输出的大小分别为320和50
        self.fc2 = nn.Linear(50, 10)
 
    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))#conv->max_pool->relu
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))#conv->dropout->max_pool->relu
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))#fc->relu
        x = F.dropout(x, training=self.training)#dropout
        x = self.fc2(x)
        return F.log_softmax(x)
 
model = Net()
if args.cuda:
    model.cuda()#将所有的模型参数移动到GPU上
 
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
 
def train(epoch):
    model.train()#把module设成training模式,对Dropout和BatchNorm有影响
    for batch_idx, (data, target) in enumerate(train_loader):
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data), Variable(target)#Variable类对Tensor对象进行封装,会保存该张量对应的梯度,以及对生成该张量的函数grad_fn的一个引用。如果该张量是用户创建的,grad_fn是None,称这样的Variable为叶子Variable。
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)#负log似然损失
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
 
def test(epoch):
    model.eval()#把module设置为评估模式,只对Dropout和BatchNorm模块有影响
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        if args.cuda:
            data, target = data.cuda(), target.cuda()
        data, target = Variable(data, volatile=True), Variable(target)
        output = model(data)
        test_loss += F.nll_loss(output, target).item()#Variable.data
        pred = output.data.max(1)[1] # get the index of the max log-probability
        correct += pred.eq(target.data).cpu().sum()
 
    test_loss = test_loss
    test_loss /= len(test_loader) # loss function already averages over batch size
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))
 
 
if __name__ == '__main__':
    for epoch in range(1, args.epochs + 1):
        train(epoch)
        test(epoch)

运行该测试代码

python pytorch_mnist.py

输入结果如下:

PyTorch1.0安装教程(附三个测试示例)_第9张图片

参考

  • https://pytorch.org/

  • https://github.com/amusi/PyTorch-From-Zero-To-One

  • https://blog.csdn.net/amusi1994/article/details/80077667

你可能感兴趣的:(PyTorch,深度学习,Python,机器学习,神经网络,Python,PyTorch)