容器是一种把多个元素组织在一起的数据结构,容器中的元素可以逐个地迭代获取,可以用in
, not in
关键字判断元素是否包含在容器中。
尽管绝大多数容器都提供了某种方式来获取其中的每一个元素,但这并不是容器本身提供的能力,而是可迭代对象赋予了容器这种能力,当然并不是所有的容器都是可迭代的,比如:Bloom filter,虽然Bloom filter可以用来检测某个元素是否包含在容器中,但是并不能从容器中获取其中的每一个值,因为Bloom filter压根就没把元素存储在容器中,而是通过一个散列函数映射成一个值保存在数组中。
很多容器都是可迭代对象,此外还有更多的对象同样也是可迭代对象,比如处于打开状态的files,sockets等等。但凡是可以返回一个迭代器的对象都可称之为可迭代对象。
可迭代对象和容器一样是一种通俗的叫法,并不是指某种具体的数据类型,list是可迭代对象,dict是可迭代对象,set也是可迭代对象。两个独立的迭代器,迭代器内部持有一个状态,该状态用于记录当前迭代所在的位置,以方便下次迭代的时候获取正确的元素。迭代器有一种具体的迭代器类型,比如list_iterator
,set_iterator
。可迭代对象实现了__iter__
方法,该方法返回一个迭代器对象。
迭代器协议是指:对象需要提供next方法,它要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 。
它是一个带状态的对象,能在你调用next()
方法的时候返回容器中的下一个值,任何实现了__iter__
和__next__()
(python2中实现next()
)方法的对象都是迭代器,__iter__
返回迭代器自身,__next__
返回容器中的下一个值,如果容器中没有更多元素了,则抛出StopIteration异常(从而停止for循环)。
迭代器就是实现了工厂模式的对象,它在你每次你询问要下一个值的时候给你返回。有很多关于迭代器的例子,比如itertools
函数返回的都是迭代器对象。
# 无限序列
>>> from itertools import count
>>> counter = count(start=13)
>>> next(counter)
13
>>> next(counter)
14
# 无限循环序列
>>> from itertools import cycle
>>> colors = cycle(['red', 'white', 'blue'])
>>> next(colors)
'red'
>>> next(colors)
'white'
>>> next(colors)
'blue'
>>> next(colors)
'red
# 截取有限序列
>>> from itertools import islice
>>> colors = cycle(['red', 'white', 'blue']) # infinite
>>> limited = islice(colors, 0, 4) # finite
>>> for x in limited:
... print(x)
red
white
blue
red
每次调用next()
方法的时候做两件事:
next()
方法修改状态for item in Iterable 循环的本质就是先通过iter()
函数获取可迭代对象Iterable的迭代器,然后对获取到的迭代器不断调用next()
方法来获取下一个值并将其赋值给item,当遇到StopIteration的异常后循环结束
生成器算得上是Python语言中最吸引人的特性之一,生成器其实是一种特殊的迭代器,不过这种迭代器更加优雅。它不需要再像上面的类一样写__iter__()
和__next__()
方法了,只需要一个yiled
关键字。 生成器一定是迭代器(反之不成立),因此任何生成器也是以一种懒加载的模式生成值。用生成器来实现斐波那契数列的例子是:
def fib():
prev, curr = 0, 1
while True:
yield curr
prev, curr = curr, curr + prev
>>> f = fib()
>>> list(islice(f, 0, 10))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
函数体中没有return
关键字,函数的返回值是一个生成器对象。当执行f=fib()
返回的是一个生成器对象,此时函数体中的代码并不会执行,只有显示或隐示地调用next的时候才会真正执行里面的代码。
生成器表达式是列表推导式(List comprehension)的生成器版本,看起来像列表推导式,但是它返回的是一个生成器对象而不是列表对象。实际上是列表推导式的[]换成()。
>>> a = (x*x for x in range(10))
>>> a
at 0x401f08>
__iter__
方法,该方法返回一个迭代器对象。__next__
和__iter__
方法,迭代器不会一次性把所有元素加载到内存,而是需要的时候才生成返回结果。return
而是用yield
。