- 强化学习:原理、概念与代码实践
AndrewHZ
深度学习新浪潮人工智能深度学习强化学习机器学习算法deepseek
一、引言强化学习(ReinforcementLearning)作为机器学习的一个重要分支,旨在通过智能体(agent)与环境的交互,学习到最优的行为策略,以最大化长期累积奖励。它在机器人控制、游戏、自动驾驶、资源管理等众多领域都取得了显著的成功。本文将深入介绍强化学习的数学原理、核心概念,并通过公式推导来加深理解,同时结合一个具体的实例,使用Python语言进行代码实现,帮助读者全面掌握强化学习的
- 【Python】成功解决NameError: name ‘XXX’ is not defined
云天徽上
python运行报错解决记录python开发语言pandas机器学习numpy
【Python】成功解决NameError:name‘XXX’isnotdefined欢迎莅临我的个人主页这里是我深耕Python编程、机器学习和自然语言处理(NLP)领域,并乐于分享知识与经验的小天地!博主简介:我是云天徽上,一名对技术充满热情的探索者。多年的Python编程和机器学习实践,使我深入理解了这些技术的核心原理,并能够在实际项目中灵活应用。尤其是在NLP领域,我积累了丰富的经验,能够
- DeepSeek-R1驱动下一代AIGC安全:全面解析智能内容合规审查技术体系与实战案例
Coderabo
DeepSeekR1模型企业级应用AIGC安全
DeepSeek-R1赋能AIGC内容合规审查:技术实践与案例解析一、AIGC内容合规审查技术架构(此处展开约1500字的技术原理说明,涵盖深度学习模型、规则引擎、多模态检测等核心组件)二、核心实施步骤与代码实现1.文本内容预处理模块importrefromdeepseek_nlpimportTextCleanerdeftext_preprocessing(text):#特殊字符过滤cleaner
- 【DeepSeek】DeepSeek 如何应用于政务系统?
深度求索者
政务
DeepSeek作为一款高性能、低成本的AI大模型,近期在政务系统中得到了广泛应用,其技术能力和场景适配性正在推动数字政府的智能化转型。以下从应用场景、技术支撑、实际成效及未来方向等方面进行深度解析:一、核心应用场景智能公文处理政策解读与文件起草:DeepSeek基于自然语言处理(NLP)技术,可自动生成公文初稿,结合政务语境提取关键信息,生成拟办意见。例如,深圳市龙岗区的公文校对时间从人工5分钟
- Decoder-Only、Encoder-Only、Encoder-Decoder 区别
会喘气的粽子丶
nlp人工智能
Decoder-Only、Encoder-Only和Encoder-Decoder是三种常见的神经网络架构,主要用于自然语言处理(NLP)任务。它们在结构和应用上有显著的区别。1.Decoder-Only架构描述:仅包含解码器部分,没有编码器。应用:通常用于生成任务,如语言模型和对话系统。代表模型:GPT(GenerativePre-trainedTransformer)特点:自回归生成:模型通过
- SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别
钟小宇
LLM人工智能语言模型
SFT(监督微调)和RLHF(基于人类反馈的强化学习)的区别STF(SupervisedFine-Tuning)和RLHF(ReinforcementLearningfromHumanFeedback)是两种不同的模型训练方法,分别用于不同的阶段和目的。以下是它们的主要区别:1.方法概述STF(监督微调):定义:STF是指在已经预训练好的模型基础上,使用标注好的数据进一步训练模型,使其在特定任务上
- 阅读论文“用于车联网安全车载通信的机器学习技术“的学习笔记
饮长安千年月
物联网安全安全机器学习学习
前言论文全称为MachineLearningTechnologiesforSecureVehicularCommunicationinInternetofVehicles:RecentAdvancescandApplications智能交通系统(ITS)和计算系统的快速发展为智能交通安全提供了新的科学研究,并提供了舒适和高效的解决方案。人工智能(AI)已被广泛用于优化不同研究领域的传统数据驱动方法
- 【AI引领潮流|未来智慧生活】国内机器聊天软件推荐(超全!)and人工智能&智能学习
熔光
人工智能AI软件智能学习生活
1.AI聊天软件概述1.1AI聊天软件的关键技术1.2AI聊天软件的应用1.3AI聊天软件的挑战1.4总结2.智普清言3.文心一言4.讯飞星火5.知元AI6.白马AI7.ChatGPT8.一览AI应用链接9.人工智能10.机器学习↓个人主页:C_GUIQU↑1.AI聊天软件概述AI聊天软件是一种利用自然语言处理(NLP)、自然语言理解(NLU)和机器学习(ML)技术构建的软件,它能够理解用户的自然
- 机器学些|实战?
dami_king
随笔机器学习
机器学习实战:从零到%1…今天聊聊机器学习(MachineLearning,ML),这个听起来高大上的技术其实并没有那么神秘。跟着我的节奏,咱们一起来探索一下如何从零开始!准备工作:安装和导入必要的库在开始我们的房价预测项目之前,我们需要准备好开发环境并导入所有必要的库。这些库将帮助我们处理数据、构建模型、评估性能以及可视化结果。安装Python和JupyterNotebook首先,确保你已经安装
- 使用OpenAI LLM与Neo4j数据库进行自然语言交互
bBADAS
neo4j数据库交互python
技术背景介绍在现代数据分析和应用开发中,图数据库以其独特的强大功能越来越受到重视。其中,Neo4j是最受欢迎的图数据库之一。结合自然语言处理(NLP),可以使数据查询变得更加直观和便捷。本篇文章将介绍如何使用OpenAI的语言模型将自然语言问题转换成Cypher查询,并通过Neo4j数据库执行该查询,并给出自然语言的响应。核心原理解析我们的目标是实现一个系统,该系统能够接受自然语言输入,将其转换为
- 机器学习和线性回归、softmax回归
小名叫咸菜
人工智能线性回归
监督学习监督学习(supervisedlearning)擅⻓在“给定输⼊特征”的情况下预测标签。每个“特征-标签”对都称为一个样本(example)。我们的目标是生成一个模型,能够将任何输⼊特征映射到标签(即预测)。回归——平方误差损失函数回归(regression)是最简单的监督学习任务之一。分类——交叉熵样本属于“哪一类”的问题称为分类问题回归是训练一个回归函数来输出一个数值;分类是训练一个分
- 强化学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是强化学习?强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,它关注的是智能体(Agent)如何在环境中通过与环境交互来学习最优的行为策略。与其他机器学习方法不同,强化学习并不依赖于预先标注的数据,而是通过试错的方式来学习。想象一下,你正在训练一只小狗学习坐下。你不会给它看成千上万张“坐下”的照片,而是会给它一些指令,比如“坐下”,如果它照
- Android-Amlogic-GPIO
shizhong2006
systemBSPandroid驱动开发linux
问题显示外设供电电压是19V,通过GPIO控制上下电,下面以此为例,梳理基于Amlogic平台,在Android系统里对GPIO的控制过程。Linuxversion5.4.125-android11-2-g05a36b0e5a09-dirtyMachinemodel:AmlogicT5DT950D4AM3011.5G分析过程原理图通过原理图,确定对显示外设供电的GPIO是GPIOH_13Andro
- 【AI日记】24.10.30 做项目的一些前期准备工作
AI完全体
AI日记人工智能机器学习自然语言处理langchain日记读书学习资源
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】工作工作1内容:看AI大佬访谈B站地址:SamAltman最新5月播客长篇访谈|@All-In播客2024.5.11时间:1.5小时评估:继续工作2内容:思考如何开始自己的RAG项目时间:0.5小时决定:采用搭积木的方法来做自己的RAG项目。从最基础的开始,不断学习各种RAG和NLP相关的技术,然后不断加入到自己的项目中,而不
- 强化学习在连续动作空间的应用:DDPG与TD3
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1强化学习简介强化学习(ReinforcementLearning,简称RL)是一种机器学习方法,它通过让智能体(Agent)在环境(Environment)中与环境进行交互,学习如何根据观察到的状态(State)选择动作(Action),以最大化某种长期累积奖励(Reward)的方法。强化学习的核心问题是学习一个策略(Policy),即在给定状态下选择动作的映射关系。1.2连续动
- 书籍-《机器学习的秘密:它是如何工作的以及它对你的意义》
机器学习深度学习人工智能
书籍:SecretsOfMachineLearning:HowItWorksAndWhatItMeansForYou作者:TomKohn出版:WorldScientificPublishingCoPteLtd编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习的秘密:它是如何工作的以及它对你的意义》01书籍介绍在众多关于机器学习和人工智能的技术文献及充满恐慌的书籍中,《机器学习的秘密》犹
- 翻译Deep Learning and the Game of Go(14)第十二章 采用actor-critic方法的强化学习
idol_watch
围棋与深度学习
本章包括:利用优势使强化学习更有效率用actor-critic方法来实现自我提升AI设计和训练Keras的多输出神经网络如果你正在学习下围棋,最好的改进方法之一是让一个水平更高的棋手给你复盘。有时候,最有用的反馈只是指出你在哪里赢棋或输棋。复盘的人可能会给出这样的评论,“你下了30步后已经远远落后了”或“在下了110步后,你有一个获胜的局面,但你的对手在130时扭转了局面。”为什么这种反馈是有帮助
- transformer概述
沉墨的夜
transformer深度学习人工智能
Transformer架构的提出,不仅在自然语言处理(NLP)领域掀起了革命,也在多个深度学习任务中获得了广泛应用。自2017年由Vaswani等人提出以来,Transformer经历了多次优化和扩展,成为深度学习领域的基石。以下是Transformer架构的演进历程、作用和意义、架构详情以及未来发展趋势的详细阐述。Transformer架构的演进历程(1)Transformer的起源(2017年
- 【开源向量数据库】Milvus简介
IT古董
开源数据库milvus
Milvus是一个开源、高性能、可扩展的向量数据库,专门用于存储和检索高维向量数据。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、异常检测等AI应用场景。官网:https://milvus.io/1.Milvus的特点(1)高性能支持数十亿级向量数据,查询速度快。使用近似最近邻(ANN)索引算法,如HNSW、IVF-FLAT、IVF-PQ、SCANN等。(2)分
- ORAM (Oblivious random access machine) 不经意随机访问机
库卡卡啦
开发语言密码学算法网络安全安全
一、定义目的是隐藏对真实数据块的访问,使得攻击者不能区分每一次访问是真实还是随机的。是一种可以用来完全隐藏IO操作的数据访问模式的加密方案。访问模式是指IO操作访问文件的顺序、访问文件的频率、读写顺序等,当用户把数据存储在不可信的第三方时,即使数据是加密的,第三方仍能通过收集用户访问模式信息推断出用户隐私,在ORAM方案中,若两次访问序列长度相同,则其访问模式是相同的,使得第三方无法通过访问模式获
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- 【深度学习基础】什么是注意力机制
我的青春不太冷
深度学习人工智能注意力机制
文章目录一、注意力机制的核心地位:从补充到主导二、技术突破:从Transformer到多模态融合三、跨领域应用:从NLP到通用人工智能四、未来挑战与趋势结语参考链接注意力机制:深度学习的核心革命与未来基石在深度学习的发展历程中,注意力机制(AttentionMechanism)的引入堪称一场革命。它不仅解决了传统模型的根本性缺陷,更通过动态聚焦关键信息的能力,重塑了人工智能处理复杂任务的范式。本文
- 语音与自然语言处理(NLP):智能交互的核心技术
给生活加糖!
热门知识自然语言处理交互人工智能
随着人工智能(AI)技术的飞速发展,语音识别与自然语言处理(NaturalLanguageProcessing,NLP)成为了智能交互系统的核心技术。它们不仅改变了人们与计算机、设备的交互方式,也推动了众多行业的革新。从智能助手(如苹果的Siri、亚马逊的Alexa)到机器翻译、自动客服系统,语音和NLP技术正逐步融入日常生活,改善我们与数字世界的沟通方式。一、什么是语音识别与自然语言处理(NLP
- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 宇树G1嵌入式软件架构及技术实现
爱吃青菜的大力水手
架构fpga开发机器人算法
Opensourcedatacollection:https://github.com/unitreerobotics/avp_teleoperateOpensourcelearningalgorithms:https://github.com/unitreerobotics/unitree_IL_lerobotOpensourcedatasetsandmodels:https://hugging
- nlp技术
tqs_12345
人工智能自然语言处理
自然语言处理(NaturalLanguageProcessing,NLP)技术是一种计算机科学与人工智能的交叉领域,涉及机器对人类语言进行处理和理解的能力。以下是一些常见的NLP技术的示例:1.机器翻译:NLP技术可以帮助机器将一种语言翻译成另一种语言。例如,谷歌翻译使用NLP技术实现自动翻译,用户可以输入一段文本,然后谷歌翻译会自动将其翻译成其他语言。2.文本分类:NLP技术可以将文本分类到不同
- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- JVM内存模型与Java线程内存模型的区别
我心向阳iu
面试-场景应用题#JVM#Java多线程jvmjava开发语言
文章目录JVM内存模型与Java线程内存模型的区别JVM内存模型1.程序计数器(ProgramCounterRegister)2.Java虚拟机栈(JavaVirtualMachineStacks)3.本地方法栈(NativeMethodStack)4.Java堆(JavaHeap)5.方法区(MethodArea)6.运行时常量池(RuntimeConstantPool)7.直接内存(Direc
- 《一文吃透!NLTK与SpaCy,自然语言处理的神兵利器》
人工智能深度学习
在人工智能的璀璨星空中,自然语言处理(NLP)无疑是最为耀眼的领域之一。它让机器能够理解、处理和生成人类语言,极大地推动了智能交互的发展。而在Python的NLP工具库中,NLTK和SpaCy就像两把锋利的宝剑,各自散发着独特的光芒。今天,就让我们深入探究这两款工具的使用技巧与优势,为你的NLP之旅增添强大助力。一、NLTK:自然语言处理的瑞士军刀NLTK(NaturalLanguageToolk
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分