#!/usr/bin/env python
import numpy as np
import cv2
import cv2.cv as cv
from video import create_capture
from common import clock, draw_str
help_message = '''
USAGE: facedetect.py [--cascade ] [--nested-cascade ] []
'''
def detect(img, cascade):
rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags = cv.CV_HAAR_SCALE_IMAGE)
if len(rects) == 0:
return []
rects[:,2:] += rects[:,:2]
return rects
def draw_rects(img, rects, color):
for x1, y1, x2, y2 in rects:
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
if __name__ == '__main__':
import sys, getopt
print help_message
args, video_src = getopt.getopt(sys.argv[1:], '', ['cascade=', 'nested-cascade='])
try: video_src = video_src[0]
except: video_src = 0
args = dict(args)
cascade_fn = args.get('--cascade', "../../data/haarcascades/haarcascade_frontalface_alt.xml")
#nested_fn = args.get('--nested-cascade', "../../data/haarcascades/haarcascade_eye.xml")
cascade = cv2.CascadeClassifier(cascade_fn)
#nested = cv2.CascadeClassifier(nested_fn)
cam = create_capture(video_src, fallback='synth:bg=../cpp/lena.jpg:noise=0.05')
while True:
ret, img = cam.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.equalizeHist(gray)
t = clock()
rects = detect(gray, cascade)
vis = img.copy()
draw_rects(vis, rects, (0, 255, 0))
for x1, y1, x2, y2 in rects:
# roi = gray[y1:y2, x1:x2]
# vis_roi = vis[y1:y2, x1:x2]
#print(x1,y1,x2,y2)
crop = vis[y1:y2,x1:x2]
cv2.imshow('crop',crop)
# subrects = detect(roi.copy(), nested)
# draw_rects(vis_roi, subrects, (255, 0, 0))
dt = clock() - t
draw_str(vis, (20, 20), 'time: %.1f ms' % (dt*1000))
cv2.imshow('facedetect', vis)
if 0xFF & cv2.waitKey(5) == 27:
break
cv2.destroyAllWindows()
效果:
上边核心代码就几行,我却弄了半天。一方面是python不熟,想学习一下,还有就是没找到合适的文档,如果用c佳佳就快多了。
吐槽一下:网上搜索的各种人脸识别其实就是人脸检测,都没做到识别那步。这里是人脸检测+人脸提取。之后提取到的图片准备扔到神经网络里去进行人脸识别。只不过遇到电脑问题。我的电脑只有一块110G的固态硬盘,老机子翻新用。结果Docker装不上,Vmware+ubuntu14.0硬盘也基本上就满了,CUDA也装不下。等解决了机器问题再继续弄神经网络吧。。
这个主题下推荐两篇博客讲得比较详细:
http://blog.csdn.net/qingyuanluofeng/article/details/51576498
http://blog.csdn.net/topgun_chenlingyun/article/details/10582641