Lua快速入门与Torch教程

  • Lua
      • 变量和控制流
      • 函数表示
      • 哈希表
      • 像类一样的table和继承
        • 模块化
  • Torch
      • Tensor
      • math function
      • Torch的CNN相关的内容
      • 奇异值SVD分解线性系统

Lua

最猛的版本还是在【2】里面,15 Min搞定Lua,因为Lua是一种脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。所以会Perl,Python,Shell的话应该很快上手。

变量和控制流

注释:
单行: –
多行:

--[[
--]]

num = 42 – 所有的数字都是double,整数有52bits来存储。
s = ‘first expression’
s2 = ”second expression of string”
muli_line_strings = [[ass
ssss]]
t = nil – 未定义的t;会有垃圾回收

while 循环:

while num < 50 do
    num = num + 1
end 

IF语句:

if num > 40 then
    print('Over 40')
elseif s~= 'hello' then 
    io.write('Not over 40\n')
else 
    thisIsGlobal = 5
    local line = io.read()
    print('Winter is coming,' .. line)
end         

Undefined Variable will be nil

foo = anUnknownVariable
aBoolValue = false

-- only nil and false are falsy
if not aBoolValue then
    print('twas false')
end 

karlSum = 0
for I = 1, 100 do
    karlSum = karlSum + i
end

fredSum = 0
for j = 100, 1, -1 do
    fredSum = fredSum + j
end

repeat 
    print('The way of the future')
    num = num - 1
until num == 0          

函数表示

function fib(n)
    if n < 2 then
        return 1
    end
    return fib(n-2) + fib(n-1)
end     
-- closures and anonymous functions
function adder(x)
    return function(y) return x + y
end 
a1 = adder(9)
a2 = adder(36)
print(a1(16)) -- >25
print(a2(64)) --> 100

x, y, z = 1,2,3,4  -- 4 被扔掉
function bar(a,b,c)
    print(a,b,c)
    return 4,8,15,16,23,42
end
x,y = bar('zaphod')  -- print 'zaphod' nil nil
-- x = 4
-- y = 8

-- global function.
function f(x) 
    return x*x
end 
f = function (x) return x*x end  

-- local function
local function g(x) 
    return math.sin(x)
end 
local g;
g = function(x)
    return math.sin(x)
end     

哈希表

t = {key1 = 'value1', key2 = false}
print(t.key1)
t.newkey = {}
t.key2 = nil -- remove key2 from the table.

u = {['@!#'] = 'qbert', [{}] = 1729, [6.28] = 'tau'}  
-- use any value as key
print(u[6.28])

a = u['@!#']
b = u[{}] -- b = nil since lookup fails.

function h(x) print(x.key1) end
h{key1 = 'Sonmi~451'}  -- Prints 'Sonmi~451'

for key, val in pairs(u) do -- table iteration
    print(key, val)
end 

print(_G['_G'] == _G) -- Print 'true'

v = {'value1', 'value2', 1.21, 'gigawatts'}
for i = 1, #v do
    print(v[i])
end

f1 = {a = 1, b = 2}  -- f1 = 0.5
f2 = {a = 2, b = 3}  -- fail: s = f1 + f2

metafraction = {}
function metafraction.__add(f1, f2)
  sum = {}
  sum.b = f1.b * f2.b
  sum.a = f1.a * f2.b + f2.a * f1.b
  return sum
end

setmetatable(f1, metafraction)
setmetatable(f2, metafraction)

s = f1 + f2  -- call __add(f1, f2) on f1's metatable     
defaultFavs = {animal = 'gru', food = 'donuts'}
myFavs = {food = 'piazza'}
setmetatable(myFavs, {__index = defaultFavs})
eatenBy = myFavs.animal

-- __add(a, b)                     for a + b
-- __sub(a, b)                     for a - b
-- __mul(a, b)                     for a * b
-- __div(a, b)                     for a / b
-- __mod(a, b)                     for a % b
-- __pow(a, b)                     for a ^ b
-- __unm(a)                        for -a
-- __concat(a, b)                  for a .. b
-- __len(a)                        for #a
-- __eq(a, b)                      for a == b
-- __lt(a, b)                      for a < b
-- __le(a, b)                      for a <= b
-- __index(a, b)  or a table>  for a.b
-- __newindex(a, b, c)             for a.b = c
-- __call(a, ...)                  for a(...)

像类一样的table和继承

Dog = {}
function Dog:new()
    newObj = {sound  =  'woof'}
    self.__index = self
    return setmetatable(newObj, self)
end

function Dog:makeSound()
    print('I say' .. self.sound)
end

mrDog = Dog:new()
mrDog:makeSound() -- 'Print I say woof' 
-- mrDog.makeSound(self)

-- 这里的Dog看起来像一个类,实际上是一个table,

继承:继承了所有的变量和函数

LoudDog = Dog:new()
function LoudDog:makeSound()
    s = self.sound .. ' '
    print(s .. s .. s)
end

seymour = LoudDog:new()
seymour:makeSound() -- 'woof woof woof'

-- 以下的子类和基类一样
function LoudDog:new()
    newObj = {}
    self.__index = self
    return setmetatable(newObj, self)
end

模块化

写一个文件叫做: mod.lua

local M = {}

local function sayMyName() 
    print('Hrunkner')
end

function M.sayHello()
    print('Why hello there')
    sayMyName()
end  

return M
-- 另外一个文件可以使用mod.lua

local mod = require('mod') -- 运行mod.lua

local mod = (function ()
    of mod.lua>
end) ()   -- 可以使用mod.lua的非local function

mod.sayHello() -- 运行正常
mod.sayMyName()  -- 报错,因为这是一个local method

-- 假设在mod2.lua里面存在 "print('Hi!')"
local a = require('mode2')
local b = require('mode2') -- 第二次不执行,因为有缓存

dofile('mod2.lua')
dofile('mod2.lua') -- 可以运行第二遍

-- load是加载到内存中,但是没有执行
f = loadfile('mod2.lua')
g = loadstring('print(343)')
g()

还有一些标准库:
String library,【11】

> = string.byte("ABCDE")      -- no index, so the first character
65
> = string.byte("ABCDE",1)    -- indexes start at 1
65
> = string.byte("ABCDE",0)    -- we're not using C
> = string.byte("ABCDE",100)  -- index out of range, no value returned
> = string.byte("ABCDE",3,4)
67      68
> s = "ABCDE"
> = s:byte(3,4)               
> -- can apply directly to string variable 
67      68
> = string.char(65,66,67)
ABC
> = string.char()  -- empty string

Table Library 【12】:

table.concat(table [, sep [, i [, j]]])

> = table.concat({ 1, 2, "three", 4, "five" })
12three4five
> = table.concat({ 1, 2, "three", 4, "five" }, ", ")
1, 2, three, 4, five
> = table.concat({ 1, 2, "three", 4, "five" }, ", ", 2)
2, three, 4, five
> = table.concat({ 1, 2, "three", 4, "five" }, ", ", 2, 4)
2, three, 4

table.foreach(table, f)

> table.foreach({1,"two",3}, print) -- print the key-value pairs


1       1
2       two
3       3
> table.foreach({1,"two",3,"four"}, function(k,v) print(string.rep(v,k)) end)
1
twotwo
333
fourfourfourfour

table.sort(table [, comp])
> t = { 3,2,5,1,4 }
> table.sort(t)
> = table.concat(t, ", ")  -- display sorted values
1, 2, 3, 4, 5

table.insert(table, [pos,] value)
> t = { 1,3,"four" }
> table.insert(t, 2, "two")  -- insert "two" at position before element 2
> = table.concat(t, ", ")
1, two, 3, four

table.remove(table [, pos])
> t = { 1,"two",3,"four" }   -- create a table
> = # t                      -- find the size
4
> table.foreach(t, print)    -- have a look at the elements
1       1
2       two
3       3
4       four
> = table.remove(t,2)        -- remove element number 2 and display it
two
> table.foreach(t, print)    -- display the updated table contents
1       1
2       3
3       four
> = # t                      -- find the size
3

math library【13】:

math.abs
math.acos
math.asin
math.atan
math.ceil
math.cos
math.deg
math.exp
math.floor
math.fmod
math.huge
math.log
math.max
math.maxinteger
math.min
math.mininteger
math.modf
math.pi
math.rad
math.random
math.randomseed
math.sin
math.sqrt
math.tan
math.tointeger
math.type
math.ult

OS Library:

os.clock()  -- CPU time
os.date([format [, time]]) 
> = os.date("%d.%m.%Y")
06.10.2012

os.difftime(t2, t1)
> t1 = os.time()
> -- wait a little while then type....
> = os.difftime(os.time(), t1)
31
> = os.difftime(os.time(), t1)
38

os.execute([command])  -- 执行命令行上的命令
> = os.execute("echo hello")
hello
0
> = os.execute("mmmmm")  -- generate an error
'mmmmm' is not recognized as an internal or external command,
operable program or batch file.
1

os.exit([code]) -- 退出当前环境
> os.exit(0)   -- kill the Lua shell we are in and pass 0 back to parent shell

os.getenv(varname)  -- 获取系统变量
> = os.getenv("BANANA")
nil
> = os.getenv("USERNAME")
Nick

os.remove(filename)  -- 删除文件
> os.execute("echo hello > banana.txt")
> = os.remove("banana.txt")
true
> = os.remove("banana.txt")
nil     banana.txt: No such file or directory   2

os.rename(oldname, newname) -- 更改文件名字
> os.execute("echo hello > banana.txt")
> = os.rename("banana.txt", "apple.txt")
true
> = os.rename("banana.txt", "apple.txt")
nil     banana.txt: No such file or directory   2

os.setlocale(locale [, category]) 

os.tmpname () -- 生成一个可以用来做临时文件的名字
> = os.tmpname()  -- on windows
\s2js.
> = os.tmpname()  -- on debian
/tmp/lua_5xPi18

IO Library【14】:

file = io.open (filename [, mode])

io.close ([file]) -- f:close ()

io.flush ()

io.input ([file])

io.lines ([filename])

for line in io.lines(filename) do ... end

io.write (value1, ...)
-- io.output():write.

f:seek ([whence] [, offset])

Lua的安装:

curl -R -O http://www.lua.org/ftp/lua-5.3.0.tar.gz
tar zxf lua-5.3.0.tar.gz
cd lua-5.3.0
make macosx test
make install
-- 接着再命令行输入lua就可以运行

另外在Lua社区有一个reference,还算比较全,可以看看【9】,中文的手册【15】,另外有一份绝世高手秘籍,学习X在Y minutes以内【10】。

Torch

安装Torch(Mac):安装完以后比如安装rnn那就是:

luarocks install [packagename](rnn,dp)
git clone https://github.com/torch/distro.git ~/torch --recursive
cd ~/torch; bash install-deps;
./install.sh
source ~/.profile

没有source file的时候,参考【19】

然后学习Torch的时候,在命令行输入th:
Lua快速入门与Torch教程_第1张图片

退出的话输入两次ctrl c,或者输入:os.exit()

运行lua的文件的话: th file.lua 或者 th -h

另外,可以看官方的cheatsheet:【20】,还有Torch的教程可以看:【16】【17】【18】

这里我介绍Torch的基本的东西。

Tensor

Tensor就是n维矩阵,这个和TF一样。

首先是开辟数组和存储:

--- creation of a 4D-tensor 4x5x6x2
z = torch.Tensor(4,5,6,2)
--- for more dimensions, (here a 6D tensor) one can do:
s = torch.LongStorage(6)
s[1] = 4; s[2] = 5; s[3] = 6; s[4] = 2; s[5] = 7; s[6] = 3;
x = torch.Tensor(s)

--- 获取Tensor的维度和size
x:nDimension()
x:size()

-- 获取元素
x = torch.Tensor(7,7,7)
x[3][4][5]

-- 等同于:
x:storage()[x:storageOffset()
              +(3-1)*x:stride(1)+(4-1)*x:stride(2)+(5-1)*x:stride(3)]              

存储:

x = torch.Tensor(4,5)
s = x:storage()
for i=1,s:size() do -- fill up the Storage
  s[i] = i
end
> x -- s is interpreted by x as a 2D matrix
  1   2   3   4   5
  6   7   8   9  10
 11  12  13  14  15
 16  17  18  19  20
[torch.DoubleTensor of dimension 4x5]

> x:stride()
 5
 1  -- element in the last dimension are contiguous!
[torch.LongStorage of size 2]

根据数据类型不同,可以有:
ByteTensor -- contains unsigned chars
CharTensor -- contains signed chars
ShortTensor -- contains shorts
IntTensor -- contains ints
LongTensor -- contains longs
FloatTensor -- contains floats
DoubleTensor -- contains doubles

x = torch.Tensor(5):zero()
生成 0

> x:narrow(1, 2, 3):fill(1) -- narrow() returns a Tensor
                            -- referencing the same Storage as x
> x
 0
 1
 1
 1
 0
[torch.Tensor of dimension 5]

--- 拷贝Tensor
y = torch.Tensor(x:size()):copy(x)
y = x:clone()

x = torch.Tensor(2,5):fill(3.14)
> x
 3.1400  3.1400  3.1400  3.1400  3.1400
 3.1400  3.1400  3.1400  3.1400  3.1400
[torch.DoubleTensor of dimension 2x5]

y = torch.Tensor(x)
> y
 3.1400  3.1400  3.1400  3.1400  3.1400
 3.1400  3.1400  3.1400  3.1400  3.1400
[torch.DoubleTensor of dimension 2x5]

y:zero()
> x -- elements of x are the same as y!
0 0 0 0 0
0 0 0 0 0
[torch.DoubleTensor of dimension 2x5]

所有的值赋予 1
x = torch.Tensor(torch.LongStorage({4}), torch.LongStorage({0})):zero() -- zeroes the tensor
x[1] = 1 -- all elements point to the same address!
> x
 1
 1
 1
 1
[torch.DoubleTensor of dimension 4]

a = torch.LongStorage({1,2}) -- We have a torch.LongStorage containing the values 1 and 2
-- General case for TYPE ~= Long, e.g. for TYPE = Float:
b = torch.FloatTensor(a)
-- Creates a new torch.FloatTensor with 2 dimensions, the first of size 1 and the second of size 2
> b:size()
 1
 2
[torch.LongStorage of size 2]

-- Special case of torch.LongTensor
c = torch.LongTensor(a)
-- Creates a new torch.LongTensor that uses a as storage and thus contains the values 1 and 2
> c
 1
 2
[torch.LongTensor of size 2]

-- creates a storage with 10 elements
s = torch.Storage(10):fill(1)

-- we want to see it as a 2x5 tensor
x = torch.Tensor(s, 1, torch.LongStorage{2,5})
> x
 1  1  1  1  1
 1  1  1  1  1
[torch.DoubleTensor of dimension 2x5]

x:zero()
> s -- the storage contents have been modified
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
[torch.DoubleStorage of size 10]

i = 0
z = torch.Tensor(3,3)
z:apply(function(x)
  i = i + 1
  return i
end) -- fill up the tensor
> z
 1  2  3
 4  5  6
 7  8  9
[torch.DoubleTensor of dimension 3x3]

z:apply(math.sin) -- apply the sin function
> z
 0.8415  0.9093  0.1411
-0.7568 -0.9589 -0.2794
 0.6570  0.9894  0.4121
[torch.DoubleTensor of dimension 3x3]

sum = 0
z:apply(function(x)
  sum = sum + x
end) -- compute the sum of the elements
> sum
1.9552094821074

> z:sum() -- it is indeed correct!
1.9552094821074

math function

这里的东西主要是和Matlab一样的接口,所以简单一些。

torch.log(x, x)
x:log()

> x = torch.rand(100, 100)
> k = torch.rand(10, 10)
> res1 = torch.conv2(x, k)   -- case 1

> res2 = torch.Tensor()
> torch.conv2(res2, x, k)     -- case 2

> res2:dist(res1)
0

case 2更好,因为不需要再进行内存分配。

把两个Tensor进行联合:
> torch.cat(torch.ones(3), torch.zeros(2))
 1
 1
 1
 0
 0
[torch.DoubleTensor of size 5]

> torch.cat(torch.ones(3, 2), torch.zeros(2, 2), 1)
 1  1
 1  1
 1  1
 0  0
 0  0
[torch.DoubleTensor of size 5x2]

> torch.cat(torch.ones(2, 2), torch.zeros(2, 2), 1)
 1  1
 1  1
 0  0
 0  0
[torch.DoubleTensor of size 4x2]

> torch.cat(torch.ones(2, 2), torch.zeros(2, 2), 2)
 1  1  0  0
 1  1  0  0
[torch.DoubleTensor of size 2x4]

> torch.cat(torch.cat(torch.ones(2, 2), torch.zeros(2, 2), 1), torch.rand(3, 2), 1)
 1.0000  1.0000
 1.0000  1.0000
 0.0000  0.0000
 0.0000  0.0000
 0.3227  0.0493
 0.9161  0.1086
 0.2206  0.7449
[torch.DoubleTensor of size 7x2]

> torch.cat({torch.ones(2, 2), torch.zeros(2, 2), torch.rand(3, 2)}, 1)
 1.0000  1.0000
 1.0000  1.0000
 0.0000  0.0000
 0.0000  0.0000
 0.3227  0.0493
 0.9161  0.1086
 0.2206  0.7449
[torch.DoubleTensor of size 7x2]

> torch.cat({torch.Tensor(), torch.rand(3, 2)}, 1)
 0.3227  0.0493
 0.9161  0.1086
 0.2206  0.7449
[torch.DoubleTensor of size 3x2]

返回对角线元素:
y = torch.diag(x, k)
y = torch.diag(x)

单位矩阵:
y = torch.eye(n, m)
y = torch.eye(n)

直方图:
y = torch.histc(x)
y = torch.histc(x, n)
y = torch.histc(x, n, min, max)

生成连续的数组:
y = torch.linspace(x1, x2)
y = torch.linspace(x1, x2, n)

生成log space:
y = torch.logspace(x1, x2)
y = torch.logspace(x1, x2, n)

y = torch.ones(m, n) returns a m × n Tensor filled with ones.

生成随机数:
y = torch.rand(m, n)

torch.range(2, 5)

element-wise的操作:基本上和matlab的接口一样
y = torch.abs(x) 
y = torch.sign(x)
y = torch.acos(x)
y = torch.asin(x)
x:asin() replaces all elements in-place with the arcsine of the elements of x.
y = torch.atan(x)

还有很多类似的操作。

Torch的CNN相关的内容

torch.conv2([res,] x, k, [, 'F' or 'V'])
-- F表示full convolution;V表示valid convolution

x = torch.rand(100, 100)
k = torch.rand(10, 10)
c = torch.conv2(x, k)
> c:size()
 91
 91
[torch.LongStorage of size 2]

c = torch.conv2(x, k, 'F')
> c:size()
 109
 109
[torch.LongStorage of size 2]

torch.xcorr2([res,] x, k, [, 'F' or 'V'])
-- 对输入增加了correlation的操作

torch.conv3([res,] x, k, [, 'F' or 'V'])

x = torch.rand(100, 100, 100)
k = torch.rand(10, 10, 10)
c = torch.conv3(x, k)
> c:size()
 91
 91
 91
[torch.LongStorage of size 3]

c = torch.conv3(x, k, 'F')
> c:size()
 109
 109
 109
[torch.LongStorage of size 3]

torch.xcorr3([res,] x, k, [, 'F' or 'V'])

逻辑操作:

torch.lt(a, b)
torch.le(a, b)
torch.gt(a, b)
torch.ge(a, b)
torch.eq(a, b)
torch.ne(a, b)
torch.all(a)
torch.any(a)

奇异值,SVD分解,线性系统

-- LU分解,解AX = B
torch.gesv([resb, resa,] B, A)

> a = torch.Tensor({{6.80, -2.11,  5.66,  5.97,  8.23},
                  {-6.05, -3.30,  5.36, -4.44,  1.08},
                  {-0.45,  2.58, -2.70,  0.27,  9.04},
                  {8.32,  2.71,  4.35,  -7.17,  2.14},
                  {-9.67, -5.14, -7.26,  6.08, -6.87}}):t()

> b = torch.Tensor({{4.02,  6.19, -8.22, -7.57, -3.03},
                  {-1.56,  4.00, -8.67,  1.75,  2.86},
                  {9.81, -4.09, -4.57, -8.61,  8.99}}):t()

> b
 4.0200 -1.5600  9.8100
 6.1900  4.0000 -4.0900
-8.2200 -8.6700 -4.5700
-7.5700  1.7500 -8.6100
-3.0300  2.8600  8.9900
[torch.DoubleTensor of dimension 5x3]

> a
 6.8000 -6.0500 -0.4500  8.3200 -9.6700
-2.1100 -3.3000  2.5800  2.7100 -5.1400
 5.6600  5.3600 -2.7000  4.3500 -7.2600
 5.9700 -4.4400  0.2700 -7.1700  6.0800
 8.2300  1.0800  9.0400  2.1400 -6.8700
[torch.DoubleTensor of dimension 5x5]


> x = torch.gesv(b, a)
> x
-0.8007 -0.3896  0.9555
-0.6952 -0.5544  0.2207
 0.5939  0.8422  1.9006
 1.3217 -0.1038  5.3577
 0.5658  0.1057  4.0406
[torch.DoubleTensor of dimension 5x3]

> b:dist(a * x)
1.1682163181673e-14

-- torch.trtrs([resb, resa,] b, a [, 'U' or 'L'] [, 'N' or 'T'] [, 'N' or 'U'])
X = torch.trtrs(B, A) 
-- returns the solution of AX = B where A is upper-triangular.

-- orch.potrf([res,] A [, 'U' or 'L'] )
-- Cholesky Decomposition of 2D
> A = torch.Tensor({
    {1.2705,  0.9971,  0.4948,  0.1389,  0.2381},
    {0.9971,  0.9966,  0.6752,  0.0686,  0.1196},
    {0.4948,  0.6752,  1.1434,  0.0314,  0.0582},
    {0.1389,  0.0686,  0.0314,  0.0270,  0.0526},
    {0.2381,  0.1196,  0.0582,  0.0526,  0.3957}})

> chol = torch.potrf(A)
> chol
 1.1272  0.8846  0.4390  0.1232  0.2112
 0.0000  0.4626  0.6200 -0.0874 -0.1453
 0.0000  0.0000  0.7525  0.0419  0.0738
 0.0000  0.0000  0.0000  0.0491  0.2199
 0.0000  0.0000  0.0000  0.0000  0.5255
[torch.DoubleTensor of size 5x5]

> torch.potrf(chol, A, 'L')
> chol
 1.1272  0.0000  0.0000  0.0000  0.0000
 0.8846  0.4626  0.0000  0.0000  0.0000
 0.4390  0.6200  0.7525  0.0000  0.0000
 0.1232 -0.0874  0.0419  0.0491  0.0000
 0.2112 -0.1453  0.0738  0.2199  0.5255
[torch.DoubleTensor of size 5x5]

-- torch.eig([rese, resv,] a [, 'N' or 'V'])
-- 奇异值分解
> a = torch.Tensor({{ 1.96,  0.00,  0.00,  0.00,  0.00},
                  {-6.49,  3.80,  0.00,  0.00,  0.00},
                  {-0.47, -6.39,  4.17,  0.00,  0.00},
                  {-7.20,  1.50, -1.51,  5.70,  0.00},
                  {-0.65, -6.34,  2.67,  1.80, -7.10}}):t()

> a
 1.9600 -6.4900 -0.4700 -7.2000 -0.6500
 0.0000  3.8000 -6.3900  1.5000 -6.3400
 0.0000  0.0000  4.1700 -1.5100  2.6700
 0.0000  0.0000  0.0000  5.7000  1.8000
 0.0000  0.0000  0.0000  0.0000 -7.1000
[torch.DoubleTensor of dimension 5x5]

> b = a + torch.triu(a, 1):t()
> b

  1.9600 -6.4900 -0.4700 -7.2000 -0.6500
 -6.4900  3.8000 -6.3900  1.5000 -6.3400
 -0.4700 -6.3900  4.1700 -1.5100  2.6700
 -7.2000  1.5000 -1.5100  5.7000  1.8000
 -0.6500 -6.3400  2.6700  1.8000 -7.1000
[torch.DoubleTensor of dimension 5x5]

> e = torch.eig(b)
> e
 16.0948   0.0000
-11.0656   0.0000
 -6.2287   0.0000
  0.8640   0.0000
  8.8655   0.0000
[torch.DoubleTensor of dimension 5x2]

> e, v = torch.eig(b, 'V')
> e
 16.0948   0.0000
-11.0656   0.0000
 -6.2287   0.0000
  0.8640   0.0000
  8.8655   0.0000
[torch.DoubleTensor of dimension 5x2]

> v
-0.4896  0.2981 -0.6075 -0.4026 -0.3745
 0.6053  0.5078 -0.2880  0.4066 -0.3572
-0.3991  0.0816 -0.3843  0.6600  0.5008
 0.4564  0.0036 -0.4467 -0.4553  0.6204
-0.1622  0.8041  0.4480 -0.1725  0.3108
[torch.DoubleTensor of dimension 5x5]

> v * torch.diag(e:select(2, 1))*v:t()
 1.9600 -6.4900 -0.4700 -7.2000 -0.6500
-6.4900  3.8000 -6.3900  1.5000 -6.3400
-0.4700 -6.3900  4.1700 -1.5100  2.6700
-7.2000  1.5000 -1.5100  5.7000  1.8000
-0.6500 -6.3400  2.6700  1.8000 -7.1000
[torch.DoubleTensor of dimension 5x5]

> b:dist(v * torch.diag(e:select(2, 1)) * v:t())
3.5423944346685e-14

-- SVD分解
> a = torch.Tensor({{8.79,  6.11, -9.15,  9.57, -3.49,  9.84},
                  {9.93,  6.91, -7.93,  1.64,  4.02,  0.15},
                  {9.83,  5.04,  4.86,  8.83,  9.80, -8.99},
                  {5.45, -0.27,  4.85,  0.74, 10.00, -6.02},
                  {3.16,  7.98,  3.01,  5.80,  4.27, -5.31}}):t()

> a
  8.7900   9.9300   9.8300   5.4500   3.1600
  6.1100   6.9100   5.0400  -0.2700   7.9800
 -9.1500  -7.9300   4.8600   4.8500   3.0100
  9.5700   1.6400   8.8300   0.7400   5.8000
 -3.4900   4.0200   9.8000  10.0000   4.2700
  9.8400   0.1500  -8.9900  -6.0200  -5.3100

> u, s, v = torch.svd(a)
> u
-0.5911  0.2632  0.3554  0.3143  0.2299
-0.3976  0.2438 -0.2224 -0.7535 -0.3636
-0.0335 -0.6003 -0.4508  0.2334 -0.3055
-0.4297  0.2362 -0.6859  0.3319  0.1649
-0.4697 -0.3509  0.3874  0.1587 -0.5183
 0.2934  0.5763 -0.0209  0.3791 -0.6526
[torch.DoubleTensor of dimension 6x5]

> s
 27.4687
 22.6432
  8.5584
  5.9857
  2.0149
[torch.DoubleTensor of dimension 5]

> v
-0.2514  0.8148 -0.2606  0.3967 -0.2180
-0.3968  0.3587  0.7008 -0.4507  0.1402
-0.6922 -0.2489 -0.2208  0.2513  0.5891
-0.3662 -0.3686  0.3859  0.4342 -0.6265
-0.4076 -0.0980 -0.4933 -0.6227 -0.4396
[torch.DoubleTensor of dimension 5x5]

> u * torch.diag(s) * v:t()
  8.7900   9.9300   9.8300   5.4500   3.1600
  6.1100   6.9100   5.0400  -0.2700   7.9800
 -9.1500  -7.9300   4.8600   4.8500   3.0100
  9.5700   1.6400   8.8300   0.7400   5.8000
 -3.4900   4.0200   9.8000  10.0000   4.2700
  9.8400   0.1500  -8.9900  -6.0200  -5.3100
[torch.DoubleTensor of dimension 6x5]

> a:dist(u * torch.diag(s) * v:t())
2.8923773593204e-14

rnn和nn不能共存的问题:class nn.SpatialGlimpse has been already assigned a parent class 【21】

转载请注明出处: http://blog.csdn.net/c602273091/article/details/78940781

Ref Links:
【1】Lua官网:http://www.lua.org/start.html
【2】15 Min搞定Lua系列: http://tylerneylon.com/a/learn-lua/
【3】Lua菜鸟教程: http://www.runoob.com/lua/lua-tutorial.html
【4】Torch教程: https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
【5】更多参考资料: https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/practicals/practical1.pdf
【6】Torch官网: http://torch.ch/docs/getting-started.html
【7】Torch 添加新的层: https://zhuanlan.zhihu.com/p/21550685
【8】小福利PyTorch: https://zhuanlan.zhihu.com/p/29779361
【9】Lua reference: http://lua-users.org/files/wiki_insecure/users/thomasl/luarefv51.pdf
【10】绝世高手秘籍: https://learnxinyminutes.com
【11】String Library:http://lua-users.org/wiki/StringLibraryTutorial
【12】Table Library: http://lua-users.org/wiki/TableLibraryTutorial
【13】Math Library: http://lua-users.org/wiki/MathLibraryTutorial
【14】IO Library: http://lua-users.org/wiki/IoLibraryTutorial
【15】Lua中文手册: http://www.runoob.com/manual/lua53doc/contents.html
【16】Torch Tensor的教程: https://github.com/torch/torch7/blob/master/doc/tensor.md
【17】Torch Math Function: https://github.com/torch/torch7/blob/master/doc/maths.md
【18】使用Torch实现的practice: https://github.com/oxford-cs-ml-2015/
【19】No Source File: http://www.voidcn.com/article/p-oeithnnf-bqk.html
【20】Torch Cheatsheet: https://github.com/torch/torch7/wiki/Cheatsheet
【21】rnn nn: https://github.com/Element-Research/dpnn/issues/95

你可能感兴趣的:(RL,&,DL,&,SLAM)