- 粉尘识别数据集——工地/矿下粉尘数据识别,数据集已划分,YOLO格式-有权重,相关指数,map相当高
毕设宇航
YOLO机器学习目标跟踪
数据集名称粉尘识别数据集数据集描述这是一个专门针对工地或矿下粉尘识别设计的数据集,包含了大量的高清图像,用于识别施工或采矿环境中产生的粉尘。数据集已经按照标准的数据划分方法分为训练集、验证集和测试集,并且以YOLO格式进行了标注。此外,数据集中还包含了预训练的模型权重和相关性能指标,如mAP(MeanAveragePrecision),表明模型在粉尘识别任务上的表现优异。数据集特点高清图像:所有图
- Tensorflow中Keras搭建神经网络六步法及参数详解 -- Tensorflow自学笔记12
青瓷看世界
tensorflow笔记人工智能深度学习神经网络
一.tf.keras搭建神经网络六步法1.import相关模块如importtensorflowastf。2.指定输入网络的训练集和测试集如指定训练集的输入x_train和标签y_train,测试集的输入x_test和标签y_test。3.逐层搭建网络结构model=tf.keras.models.Sequential()。4.在model.compile()中配置训练方法选择训练时使用的优化器、
- fastText 情感分类
dreampai
情感分类任务就是看一段文本,然后分辨这个人是否喜欢他们在讨论的这个东西。情感分类一个最大的挑战就是可能标记的训练集没有那么多,但是有了词嵌入,即使只有中等大小的标记的训练集,你也能构建一个不错的情感分类器image.pngimage.png假设有一个句子:“这个衣服质量不错”通过分词、去除停用词等预处理操作,得到“衣服/质量/不错”获取“衣服”、“质量”、“不错”的对应词向量(可以通过TF-IDF
- 【机器学习】K近邻
可口的冰可乐
机器学习机器学习人工智能
2.K近邻K近邻算法(KNN)的基本思想是通过计算待分类样本与训练集中所有样本之间的距离,选取距离最近的K个样本,根据这些样本的标签进行分类或回归。KNN属于非参数学习算法,因为它不假设数据的分布形式,主要依赖距离度量来进行决策。优点简单易懂:KNN算法非常直观,容易理解和实现。无假设:KNN算法对数据没有假设,适用于复杂分布的数据集。适用于多类分类问题:KNN能够处理多类分类问题,只需在投票过程
- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- YOLOv8模型参数详解
AdaCoding
YOLOv8改进系列YOLO目标检测
YOLOv8模型参数详解task:任务类型,通常为detect(检测)。mode:模式,train表示训练模式。model:模型配置文件的路径,指定了YOLOv8模型的结构。data:数据集配置文件的路径,包含了训练集和验证集的信息。epochs:训练的轮数。patience:早期停止的耐心值,表示在没有进一步改进后多少轮后停止训练。batch:批处理大小,即每次前向和后向传播使用的样本数。img
- 【机器学习】任务二:波士顿房价的数据与鸢尾花数据分析及可视化
FHYAAAX
机器学习机器学习数据分析人工智能
目录1.实验知识准备1.1NumPy1.2Matplotlib库1.3scikit-learn库:1.4TensorFlow1.5Keras2.波士顿房价的数据分析及可视化2.1波士顿房价的数据分析2.1.1步骤一:导入所需的模块和包2.1.2步骤二:从Keras库中加载波士顿房价数据集2.1.3步骤三:加载本地CSV数据集2.1.4步骤四:划分特征和目标变量2.1.5步骤五:划分训练集和测试集2
- Zero-Shot Image Classification总结
夏日小光
1任务说明现有的benchmark通过ImageNet-1k上预训练的Res101从已知类的训练集提取feature或者featuremap,然后对每一个类引入一个语义标签,可能是属性标签(attributelabel)、或者描述标签(sentenceembedding)等。对于某个类的属性标签(向量形式),每个维度表示一种属性,该维度下的取值表示这个属性在该类别中存在的可能性,值得注意的是ben
- 训练过程训练集的准确率都低于验证集和测试集的准确率可能的原因
Wils0nEdwards
python人工智能深度学习
每一个epoch训练集的准确率都低于验证集和测试集的准确率,这种现象不太常见,可能有以下几个原因:1.数据增强过强如果你在训练集上使用了较强的数据增强(如随机翻转、ColorJitter等),而验证集和测试集仅进行了基础的预处理。这会导致训练集的样本更具挑战性,模型在训练集上的表现不如在验证集和测试集上的表现。2.训练和验证集分布差异训练集、验证集和测试集的分布可能存在差异。如果训练集包含更多的噪
- 识别实验笔记和经验总结
Wils0nEdwards
笔记
1.跑对比实验之前,首先保证对比的公平性和可靠性!在进行图像分类模型对比实验时,为了确保对比的公平性和可靠性,以下几个因素需要重点考虑:数据集的一致性:数据集分割:确保训练集、验证集和测试集的划分是一致的。各模型使用相同的训练数据和测试数据。数据集大小:确保数据集的样本数量充足且具有代表性,避免数据集过小导致结果不具备普遍性。数据预处理:图像预处理方法:所有模型使用相同的预处理方法(如归一化、裁剪
- 遥感影像-语义分割数据集:GID数据集详细介绍及训练样本处理流程
GIS潮流
计算机视觉人工智能机器学习
GID数据集:大规模高分卫星土地覆盖数据集原始数据集详情简介:GID是基于我国Gaofen-2卫星数据而构建的大规模高分辨率遥感图像土地覆盖数据集。GID数据集分为大规模分类集(GID-5)和精细土地覆盖集(GID-15)两个部分。大规模分类集(GID-5)包含建筑、农田、森林、草地和水域等5个土地覆盖类别,共计150景像素级标注的Gaofen-2卫星遥感图像。其中,训练集为120景图像,验证集为
- Datawhale x李宏毅苹果书入门 AI夏令营 task03学习笔记
weixin_75033552
人工智能学习笔记
实践方法论训练模型的基本步骤:(如下图所示)用训练集训练模型,(最终得出来最优的参数集)将最优参数集带入模型中,用测试集测试模型(人话:将最优参数集带入原来函数中,用测试集的x值计算y值)(这个过程就叫做预测)训练过程中遇到问题的解决攻略(看下图的方式是“前序遍历”)modelbias出现问题的情况:1.看trainingdata的loss,太大;2.当你模型无论如何调整参数,训练的结果还是不够好
- 机器学习(2)单变量线性回归
天凉玩个锤子
2.1模型表示我们学习的第一个算法是线性回归算法。在监督学习中,我们有一个数据集,这个数据集被称为训练集(TrainingSet)。我们用小写字母m来表示训练样本的数目。监督学习算法的工作方式以房屋价格的训练为例,将训练集里房屋价格喂给学习算法,学习算法工作后输出一个函数h,h代表hypothesis(假设)。函数h输入为房屋尺寸大小x,h根据输入来得出y值,y值对应房子的价格。因此,h是一个从x
- 工地工程车分类检测数据集 6300张 带标注 voc yol
计算机视觉从业者
数据集分类人工智能机器学习工地工程车汽车
数据集特点类型:工地工程车分类检测数据集。格式:VOC和YOLO格式,适用于训练目标检测模型。规模:共包含6300张图像。标注:使用.xml(VOC格式)和.txt(YOLO格式)文件进行标注,每个文件对应一张图像,标注格式分别为VOC和YOLO格式。类别:包含多种工地工程车辆类别。质量:数据集标注准确,涵盖了多种工地环境下的工程车辆。数据集组成训练集:用于训练模型,包含约5000张图像。验证集:
- sklearn 评估模型 常用函数
小Z资本
sklearn人工智能python
`sklearn.metrics`是scikit-learn库中的一个模块,它提供了许多用于评估预测模型性能的指标和工具。这些指标和工具可以帮助你了解模型在训练集和测试集上的表现,以及模型是否能够很好地泛化到未见过的数据。以下是一些`sklearn.metrics`中常用的函数和指标:1.**分类指标**:-`accuracy_score`:计算分类准确率。-`classification_rep
- AI学习记录 - 对抗性神经网络
victor-AI最好的学习方式是画图
人工智能学习神经网络
有用点赞哦学习机器学习到一定程度之后,一般会先看他的损失函数是什么,看他的训练集是什么,训练集是什么,代表我使用模型的时候,输入是什么类型的数据。对抗神经网络其实可以这样子理解,网上一直说生成器和判别器的概念,没有触及到本质。我有一种看法:假如当前场景是输入模糊图片,然后输出高质量图片。当判别器和生成器本来就是一个模型,在不把判别器生成器拆开的时候,我输入一张图片,这个模型输出的是0和1,那这个整
- 机器学习——支持向量机
酱香编程,风雨兼程
机器学习支持向量机机器学习算法
一、间隔与支持向量 给定训练样本集D={(x1,y1),(x2,y2),⋯ ,(xm,ym)},yi∈{−1,+1}D=\{(\bmx_1,y_1),(\bmx_2,y_2),\cdots,(\bmx_m,y_m)\},y_i\in\{-1,+1\}D={(x1,y1),(x2,y2),⋯,(xm,ym)},yi∈{−1,+1},分类学习最基本的想法就是基于训练集DDD在样本空间中找到一个划分超
- 第七届MathorCup高校数学建模挑战赛-A题:基于改进的神经网络和混沌时间序列预测控制高炉炼铁过程
格图素书
大数据竞赛赛题解析数学建模神经网络人工智能
目录摘要一.问题重述二.模型假设三.符号说明四.问题分析五.数据预处理5.1异常值剔除5.2归一化处理5.3预处理后的数据六.问题一模型的建立与求解6.1BP神经网络预测模型6.1.1输入层和输出层6.1.2训练集和验证集6.1.3三层BP神经网络结构6.1.4BP神经网络的参数6.1.6相关性分析6.2小波神经网络预测模型6.2.1小波神经网络的结构6.2.2小波神经网络的基函数6.2.3小波神
- PyTorch深度学习模型训练流程的python实现:回归
moyao_miao
python人工智能深度学习pytorch回归
回归的流程与分类基本一致,只需要把评估指标改动一下就行。回归输出的是损失曲线、R^2曲线、训练集预测值与真实值折线图、测试集预测值散点图与真实值折线图。输出效果如下:注意:预测值与真实值图像处理为按真实值排序,图中呈现的升序与数据集趋势无关。代码如下:fromfunctoolsimportpartialimportnumpyasnpimportpandasaspdfromsklearn.prepr
- 基于YOLOv8的无人机高空红外(HIT-UAV)检测算法,新的混合型扩张型残差注意力(HDRAB)助力涨点(二)
AI小怪兽
深度学习实战应用案列108篇YOLO无人机算法python开发语言目标检测人工智能
本文内容:针对基于YOLOv8的无人机高空红外(HIT-UAV)检测算法进行性能提升,加入各个创新点做验证性试验。一种新的混合型扩张型残差注意力(HDRAB),去除图像采集或传输过程中产生的真实噪声(即空间变异噪声)1)混合型扩张型残差注意力(HDRAB):mAP从原始的0.773提升至0.7791.无人机高空红外数据集介绍无人机高空红外检测数据集大小,训练集2008,验证集287,测试集571张
- cnn卷积神经网络反向传播,卷积神经网络维度变化
阳阳2013哈哈
PHPcnn机器学习深度学习神经网络
卷积神经网络是如何反向调整参数的?卷积神经网络反向传播和bp有什么区别如何理解神经网络里面的反向传播算法反向传播算法(Backpropagation)是目前用来训练人工神经网络(ArtificialNeuralNetwork,ANN)的最常用且最有效的算法。其主要思想是:(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结
- 机器学习:knn算法实现图像识别
夜清寒风
机器学习算法人工智能
1、概述使用K-近邻(K-NearestNeighbors,KNN)算法对手写数字进行识别的过程。通过读取一张包含多个手写数字的图片,将其分割成单独的数字图像,并将其作为训练和测试数据集。2、数据处理思路1、图像分割该数据有50行100列,每个数字占据20*20个像素点,可以进行切分2、划分出训练集和测试集3、每个数据的像素点为20*20,将其全部变成一列1*400格式,转换成数值特征4、最后使用
- 基于R语言遥感随机森林建模与空间预测
weixin_贾
统计语言类模型分布式
随机森林作为一种集成学习方法,在处理复杂数据分析任务中特别是遥感数据分析中表现出色。通过构建大量的决策树并引入随机性,随机森林在降低模型方差和过拟合风险方面具有显著优势。在训练过程中,使用Bootstrap抽样生成不同的训练集,并在节点分裂时随机选择特征子集,这使得模型具备了处理高维和非线性数据的能力。随机森林对噪声和异常值具有鲁棒性,其预测结果通过对多棵树的集成投票或平均获得,减少了单个异常对结
- 零基础机器学习(5)之线性回归模型的性能评估
一只特立独行猪
机器学习机器学习线性回归人工智能
文章目录线性回归模型的性能评估1.举例1-单一特征2.举例2-多特征线性回归模型的性能评估评估线性回归模型时,首先要建立评估的测试数据集(测试集不能与训练集相同),然后选择合适的评估方法,实现对线性回归模型的评估。回归任务中最常用的评估方法有均方误差、均方根误差和预测准确率(确定系数)。1.举例1-单一特征分别对两个模型进行评估,输入的测试集如表所示。面积/(m2)售价/(万元)面积/(m2)售价
- 深度学习的一个完整过程通常包括以下几个步骤
longerVR
DL深度学习人工智能
深度学习的一个完整过程通常包括以下几个步骤:问题定义和数据收集:定义清晰的问题,明确任务的类型(分类、回归、聚类等)以及预期的输出。收集和整理用于训练和评估模型的数据集。确保数据集的质量,进行预处理和清理。数据预处理:处理缺失值、异常值和重复数据。进行特征工程,选择、转换或创建合适的特征。将数据集划分为训练集、验证集和测试集。选择模型架构:根据问题的性质选择适当的深度学习模型架构,如卷积神经网络(
- 【机器学习笔记】 9 集成学习
RIKI_1
机器学习机器学习笔记集成学习
集成学习方法概述Bagging从训练集中进行子抽样组成每个基模型所需要的子训练集,对所有基模型预测的结果进行综合产生最终的预测结果:假设一个班级每个人的成绩都不太好,每个人单独做的考卷分数都不高,但每个人都把自己会做的部分做了,把所有考卷综合起来得到成绩就会比一个人做的高Boosting训练过程为阶梯状,基模型按次序一一进行训练(实现上可以做到并行),基模型的训练集按照某种策略每次都进行一定的转化
- tenorflow
小鱼儿小于儿
tensorflow
tensorflow笔记3MNIST数据集共7万张图片,都是28*28像素点的手写数字图片。6万张用于训练,1万张用于测试。importtensorflowastfmnist=tf.keras.datasets.mnist(x_train,y_train),(x_test,y_test)=mnist.load_data()#直接送数据集中读取训练集和测试机x_train,x_test=x_trai
- 【面经——《广州敏视数码科技有限公司》——图像处理算法工程师-深度学习方向】
有情怀的机械男
面试offer面经
目录笔试HR面专业面——60多分钟主管面反问:笔试8道题——简答题+1道编程苹果、香蕉、梨、菠萝,彩色图像如何进行分类?一辆带车牌的汽车,图像亮度整体呈现偏亮状态,如何去提高图像的清晰度?并设计一个准确定位车牌位置的方案。训练集和测试集各5000张,进行目标检测,写出选择的模型以及设计方案?样本量不足怎么去提高检测的准确性?数据增强梯度下降法的优化算法有哪些,各有什么优缺点?损失函数有哪些?优缺点
- 【机器学习笔记】13 降维
RIKI_1
机器学习机器学习笔记人工智能
降维概述维数灾难维数灾难(CurseofDimensionality):通常是指在涉及到向量的计算的问题中,随着维数的增加,计算量呈指数倍增长的一种现象。在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增加搜寻良好解决方案的困难。这个问题就是我们常说的维数灾难。维数灾难涉及数字分析、抽样、组合、机器学习、数据挖掘和数据库
- 【机器学习笔记】8 决策树
RIKI_1
机器学习机器学习笔记决策树
决策树原理决策树是从训练数据中学习得出一个树状结构的模型。决策树属于判别模型。决策树是一种树状结构,通过做出一系列决策(选择)来对数据进行划分,这类似于针对一系列问题进行选择。决策树的决策过程就是从根节点开始,测试待分类项中对应的特征属性,并按照其值选择输出分支,直到叶子节点,将叶子节点的存放的类别作为决策结果。以下小美相亲的例子就是决策树决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本