cnn卷积神经网络反向传播,卷积神经网络维度变化

cnn卷积神经网络反向传播,卷积神经网络维度变化_第1张图片

卷积神经网络是如何反向调整参数的?

卷积神经网络反向传播和bp有什么区别

如何理解神经网络里面的反向传播算法

反向传播算法(Backpropagation)是目前用来训练人工神经网络(ArtificialNeuralNetwork,ANN)的最常用且最有效的算法。

其主要思想是:(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。

反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。1.变量定义上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。

如图,先定义一些变量:表示第层的第个神经元连接到第层的第个神经元的权重;表示第层的第个神经元的偏置;表示第层的第个神经元的输入,即:表示第层的第个神经元的输出,即:其中表示激活函数。

2.代价函数代价函数被用来计算ANN输出值与实际值之间的误差。

常用的代价函数是二次代价函数(Quadraticcostfunction):其中,表示输入的样本,表示实际的分类,表示预测的输出,表示神经网络的最大层数。

3.公式及其推导本节将介绍反向传播算法用到的4个公式,并进行推导。如果不想了解公式推导过程,请直接看第4节的算法步骤。

首先,将第层第个神经元中产生的错误(即实际值与预测值之间的误差)定义为:本文将以一个输入样本为例进行说明,此时代价函数表示为:公式1(计算最后一层神经网络产生的错误):其中,表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。

公式1的推导过程如下:公式2(由后往前,计算每一层神经网络产生的错误):推导过程:公式3(计算权重的梯度):推导过程:公式4(计算偏置的梯度):推导过程:4.反向传播算法伪代码输入训练集对于训练集中的每个样本x,设置输入层(Inputlayer)对应的激活值:前向传播:,计算输出层产生的错误:反向传播错误:使用梯度下降(gradientdescent),训练参数:

如何对CNN网络的卷积层进行反向传播

在多分类中,CNN的输出层一般都是Softmax。RBF在我的接触中如果没有特殊情况的话应该是“径向基函数”(RadialBasisFunction)。

在DNN兴起之前,RBF由于出色的局部近似能力,被广泛应用在SVM的核函数中,当然也有我们熟悉的RBF神经网络(也就是以RBF函数为激活函数的单隐含层神经网络)。

如果说把RBF作为卷积神经网络的输出,我觉得如果不是有特殊的应用背景的话,它并不是一个很好的选择。至少从概率角度上讲,RBF没有Softmax那样拥有良好的概率特性。

如果题主是在什么地方看到它的源代码并且感到困惑的话,可以贴上源链接一起讨论一下。

的定义和计算公式参考:/link?url=7LE6KImv5IveCM90JcnctlgVY7OgCd7E_G0Yv0vyTfV3P8S3Q_rZU3CM6f0udS-b6ux2w-hejkOrGMkmj8Nqba。

什么是深度学习与机器视觉

深度学习框架,尤其是基于人工神经网络的框架可以追溯

你可能感兴趣的:(PHP,cnn,机器学习,深度学习,神经网络)