目标检测评价指标解释(precision, recall, mAP)

目标检测评价指标解释(precision, recall, mAP)

Reference:
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html

TP, FP, FN, TN

这些指标都源于下表

~ 预测 预测
~ 1 0
实际 1 TP FN
实际 0 FP TN

Precistion Recall

Precision(预测正例正确占所有预测正例的比重) = TP / (TP + FP)

Recall = Ture Positive Rate(分类器识别的正例占) = TP/(TP + FN)

False positive rate = FP / (FP + TN)

False alarm = FP / (FP + TP)
2 / F_1 = 1 / Recall + 1 / Precision
mAP = \int_{1}^{1} P(r) dr
P是修正的Precision
R是Recall

你可能感兴趣的:(图像识别,Deep-Learn)