- SPARKLE:深度剖析强化学习如何提升语言模型推理能力
摘要:强化学习(ReinforcementLearning,RL)已经成为赋予语言模型高级推理能力的主导范式。尽管基于RL的训练方法(例如GRPO)已经展示了显著的经验性收益,但对其优势的细致理解仍然不足。为了填补这一空白,我们引入了一个细粒度的分析框架,以剖析RL对推理的影响。我们的框架特别研究了被认为可以从RL训练中受益的关键要素:(1)计划遵循和执行,(2)问题分解,以及(3)改进的推理和知
- Python机器学习教程
Python机器学习教程(MachineLearningwithPythonTutorial)PDFVersionQuickGuideResourcesJobSearchDiscussionPDF版本快速指南资源资源求职讨论区MachineLearning(ML)isbasicallythatfieldofcomputersciencewiththehelpofwhichcomputersyste
- 【DeepSeek实战】10、模型上下文协议(MCP)全解析:从核心架构到实战应用,揭秘AI协作的“凤雏”之力
无心水
人工智能架构DeepSeek实战模型上下文协议MCPCSDN技术干货DeepSeekAI大模型
在人工智能技术飞速发展的今天,大型语言模型(LLM)的能力不断突破,但跨模型协作、上下文一致性维护等问题却成为制约AI系统向更智能、更协同方向发展的瓶颈。模型上下文协议(ModelContextProtocol,MCP)作为专为大模型设计的标准化通信框架,如同“凤雏”之于“卧龙”,为解决这些核心问题提供了关键方案。本文将全面解析MCP的核心概念、架构设计、实操代码、应用案例及未来趋势,通过5000
- 【DW11月-深度学习】Task03前馈神经网络
沫2021
参考链接:https://datawhalechina.github.io/unusual-deep-learning/#/4.%E5%89%8D%E9%A6%88%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C一、神经元模型2.1神经元1943年,美国神经生理学家沃伦·麦卡洛克(WarrenMcCulloch)和数学家沃尔特·皮茨(WalterPitts)对生物神经元进行
- 边缘智能革命:嵌入式机器学习如何让万物“思考”
万能小贤哥
机器学习人工智能
当智能手表精准识别你的健身动作,工业传感器预测设备故障于毫秒之间,农业传感器自动调节灌溉水量——这些并非科幻场景,而是嵌入式机器学习(EmbeddedMachineLearning,或TinyML)正在悄然重塑的现实。这场发生在设备边缘的智能革命,正将AI从云端的数据中心拉近到我们指尖的每一台设备中。一、嵌入式机器学习:定义与核心价值嵌入式机器学习是指在资源极端受限的微控制器(MCU)、微处理器(
- 预测导管原位癌浸润性复发的深度学习:利用组织病理学图像和临床特征
浪漫的诗人
论文深度学习人工智能
文章目录研究内容目的方法数据集模型开发模型训练与评估外部验证统计分析研究结果模型性能风险分层外部验证特征重要性原文链接原文献:Deeplearningforpredictinginvasiverecurrenceofductalcarcinomainsitu:leveraginghistopathologyimagesandclinicalfeatures研究背景【DCIS与IBC的关联】乳腺导管
- 《How to Take Smart Notes》读书笔记1
LY320
最近在读一本书,题为《HowtoTakeSmartNotes:OneSimpleTechniquetoBoostWriting,LearningandThinking–forStudents,AcademicsandNonfictionBookWriters》1。尚未读完,分享一些读这本书的感想,我的一些心得,和不解。这本书让我觉得最有收获的点是更新了我对记录和整理笔记的认识。通常我们在记录笔记时
- Spring AI 项目实战(十八):Spring Boot + AI + Vue3 + OSS + DashScope 实现高效语音识别系统(附完整源码)
程序员岳彬
SpringAIspring人工智能springboot语音识别后端aijava
系列文章序号文章名称1SpringAI项目实战(一):SpringAI核心模块入门2SpringAI项目实战(二):SpringBoot+AI+DeepSeek深度实战(附完整源码)3SpringAI项目实战(三):SpringBoot+AI+DeepSeek打造智能客服系统(附完整源码)4
- 2021-03-22 每日打卡
来多喜
昨日完成情况:1.完成了3k跑,太久没锻炼体力跟不上,没力气做帕梅拉了。2.MathematicsforMachineLearning:LinearAlgebra学完了week3和week4,week5还剩大概一个小时学完,没有开始做思维导图。早上跑步回来后看《你是我的城池堡垒》看了两个小时,虽然一边看一边洗碗,洗完碗一边看一边吃饭,但是从三点多才开始学习。重要的事情要先做!3.没有时间做Pyth
- Opencv学习_2 (opencv结构&显示图像)
opencv结构:1:主要包含:cxcorecvmachinelearninghighguicvcamcvaux2:cxcore:基础结构:CvPoint,CvSize,CvScalar等数组结构:cvCreateImage,cvCreateMat等动态结构:CvMemStorage,CvMemBlock等绘图函数:cvLine,cvRectangle等数据保存和运行时类型信息:CvFileSto
- 野兽的呼唤~26
爱机车的异乡人
Andhesawnexttohim,nottheIndiancook,butanotherman,amanwithshorterlegs,andlongerarms.他看见身边并不是那个印第安厨子而是另一个人。Thismanhadlonghairanddeepeyes,anddeepeyes,andmadestrangenoisesinhisthroat.Hewasveryfrightenedof
- AI+Python赋能!长时序植被遥感动态分析全攻略:从物候提取到生态评估
梦想的初衷~
土壤植被遥感人工智能遥感植被土壤
在遥感技术与人工智能深度融合的2025年,AI大模型正重塑长时序植被遥感数据分析范式。从Landsat/Sentinel卫星数据的智能化去云处理,到MODIS植被产品的AI辅助质量控制,以ChatGPT、DeepSeeK为代表的大模型技术已成为提升遥感数据处理效率与精度的核心工具——尤其在长时序植被动态监测、物候期精准提取、时空变异归因分析及生态环境质量评估等领域,展现出传统方法难以企及的技术优势
- #Datawhale组队学习#7月-强化学习Task1
fzyz123
Datawhale组队学习强化学习人工智能AI
这里是Datawhale组织的组队学习《强化学习入门202507》,Datawhale是一个开源的社区。第一章绪论1.1为什么要学习强化学习?强化学习(ReinforcementLearning,RL)是机器学习中专注于智能体(Agent)如何通过与环境交互学习最优决策策略的分支。与监督学习依赖静态数据集、无监督学习聚焦数据内在结构不同,强化学习的核心在于序贯决策:智能体通过试错探索环境,根据行动
- 图机器学习(13)——图相似性检测
图机器学习(13)——图相似性检测0.前言1.基于图嵌入的方法2.基于图核的方法3.基于GNN的方法4.应用0.前言图机器学习(machinelearning,ML)方法能广泛应用于各类任务,其应用场景涵盖从药物设计到社交网络推荐系统等多个领域。值得注意的是,由于这类方法在设计上具有通用性,同一算法可用于解决不同问题。学习图之间相似性的定量度量是一个关键问题。事实上,这是网络分析的重要步骤,同时也
- 不同行业的 AI 数据安全与合规实践:7 大核心要点全解析
观熵
人工智能DeepSeek私有化部署
不同行业的AI数据安全与合规实践:7大核心要点全解析关键词AI数据安全、行业合规、私有化部署、数据分类分级、国产大模型、隐私保护、DeepSeek部署摘要随着国产大模型在金融、医疗、政务、教育等关键领域的深入部署,AI系统对数据安全与行业合规提出了更高要求。本文结合DeepSeek私有化部署实战,系统梳理当前各行业主流的数据安全合规标准与落地策略,从数据分类分级、访问控制、审计追踪到敏感信息识别与
- AI MCP教程之 什么是 MCP?利用本地 LLM 、MCP、DeepSeek 集成构建您自己的 AI 驱动工具
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能mcpdeepseek
介绍利用模型上下文协议(MCP)的工具吸引了我们的注意力—将AI变成触手可及的生产力引擎。它们巧妙、高效,让人难以抗拒。但如果您可以将这样的功能添加到自己的工具中,会怎么样呢?在本指南中,我将引导您构建一个具有本地运行的大型语言模型(LLM)和MCP集成的AI工具-让您以类似的方式自动执行利用MCP的工具您喜欢的任务。推荐文章《AnythingLLM教程系列之12AnythingLLM上的Olla
- 使用 Ollama 、 DeepSeek和QWEN的模型上下文协议 (MCP) ,使用本地 LLM 教程的 MCP 服务器
知识大胖
NVIDIAGPU和大语言模型开发教程服务器运维人工智能qwen2vldeepseek
简介模型上下文协议:MCP服务器据称是AI领域的下一个重大改变者,它将使AI代理变得比我们想象的更加先进。MCP或模型上下文协议由Anthropic去年发布,它可以帮助LLM连接软件并对其进行控制。但有一个问题大多数MCP服务器都与ClaudeAI兼容,尤其是ClaudeAI桌面应用程序,但它们有自己的限制。有没有办法我们可以使用本地LLM运行MCP服务器?是的,在这个特定的逐步详细教程中,我们将
- 12 个强大的 DeepSeek AI 提示将彻底改变您的日常生活
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
内容写作的最佳提示让我们从写作开始吧。无论您是博主、学生还是社交媒体创作者,这些提示都将帮助您创作出精彩的内容。提示1:“扮演专业文案撰稿人,为[产品/服务]撰写引人注目的广告文案。文案应引人入胜、具有说服力,且字数不得超过100个字。”这使得ChatGPT的响应结构就像真实的广告文案一样。提示2:“以更具吸引力和说服力的方式重写此段落,同时保持含义不变:[插入文本]。”推荐文章《Neo4j上使用
- 使用 Deepseek Zero Coding Experience 创建类似飞扬的小鸟游戏
知识大胖
NVIDIAGPU和大语言模型开发教程游戏deepseekollamajanuspro
简介Flappybird在苹果商店推出后,每天大约能赚5000美元,但后来被苹果故意下架。现在我正尝试使用Deepseek制作这样一款游戏。技术在不断变化,编码知识也在不断变化,只需修改代码即可获得结果。让我们在Deepseek上试试这款游戏:推荐文章《如何在本地电脑上安装和使用DeepSeekR-1》权重1,DeepSeek《Nvidia系列之使用NVIDIAIsaacSim和ROS2的命令行控
- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- 在 Obsidian 中本地使用 DeepSeek — 无需互联网!
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
简介您是否想在Obsidian内免费使用类似于ChatGPT的本地LLM?如果是,那么本指南适合您!我将引导您完成在Obsidian中安装和使用DeepSeek-R1模型的确切步骤,这样您就可以在笔记中拥有一个由AI驱动的第二大脑。推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《在RaspberryPi上运行语音识别
- 使用 DeepSeek R1 和 Ollama 开发 RAG 系统 使用 DeepSeek R1 和 Ollama 构建强大的 RAG 系统。了解开发智能 AI 解决方案的设置过程、最佳实践和技巧。
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介DeepSeekR1和Ollama提供了用于构建检索增强生成(RAG)系统的强大工具。本指南介绍了使用这些技术开发RAG应用程序的设置、实施和最佳实践。为什么RAG系统会改变游戏规则检索增强生成(RAG)系统结合了搜索和生成AI的优点,可实现精确且准确的情境感知响应。借助DeepSeekR1和Ollama等工具,创建RAG系统不再令人生畏。无论您是构建聊天机器人、知识助手还是AI驱动的搜索引擎
- 【实战AI】macbook M1 本地ollama运行deepseek
东方鲤鱼
chatAImacosaillamaAIGCchatgpt
由于deepseek官网或者Aapi调用会有网络延迟或不响应的情况,故在本地搭建部署;前提条件1.由于需要拉取开源镜像,受网络限制,部分资源在前提中会下载的更快!请自行;2.设备macbookM132G下载ollamaOllama是一款跨平台推理框架客户端(MacOS、Windows、Linux),专为无缝部署大型语言模型(LLM)(如Llama2、Mistral、Llava等)而设计。通过一键式
- DeepSeek解读道德经 第五十九章
cal_
道德经道德经
一、原文与译文原文:治人事天,莫若啬。夫唯啬,是谓早服;早服谓之重积德;重积德则无不克;无不克则莫知其极;莫知其极,可以有国;有国之母,可以长久。是谓深根固柢,长生久视之道。译文:治理百姓侍奉天道,没有比珍爱能量更重要的。唯有珍惜能量,才叫早作准备;早作准备就是厚积德性;厚积德性则无往不胜;无往不胜则力量无穷;力量无穷便可守护国家;掌握治国根本,方能长久延续。这便是根深柢固、长生久存之道。二、核心
- Golang面试题二(slice,map,chan)
os-lee
go高级golang开发语言后端
目录1.slice的底层实现1.结构体定义2.slice四种初始化方式3.底层函数2.Go语言当中数组和slice的区别是什么?1.长度不同2.函数传参不同3.计算长度方式不同3.slice的扩容机制,有什么注意点扩容机制总结4.扩容前后的Slice是否相同5.深拷贝和浅拷贝浅拷贝(ShallowCopy)深拷贝(DeepCopy)总结6.slice为什么不是线程安全的7.map底层实现8.map
- 在mac m1基于llama.cpp运行deepseek
lama.cpp是一个高效的机器学习推理库,目标是在各种硬件上实现LLM推断,保持最小设置和最先进性能。llama.cpp支持1.5位、2位、3位、4位、5位、6位和8位整数量化,通过ARMNEON、Accelerate和Metal支持Apple芯片,使得在MACM1处理器上运行Deepseek大模型成为可能。1下载llama.cppgitclonehttps://github.com/ggerg
- Python桌面应用开发的未来——智能化工具与大模型赋能
IronwoodStag78
开发AI智能应用,就下载InsCodeAIIDE,一键接入DeepSeek-R1满血版大模型!标题:Python桌面应用开发的未来——智能化工具与大模型赋能随着人工智能技术的飞速发展,传统软件开发模式正在被重新定义。Python作为一门功能强大且灵活的语言,在桌面应用开发领域一直占据重要地位。然而,面对日益复杂的用户需求和快速变化的技术环境,如何提升开发效率、降低开发门槛,成为开发者亟需解决的问题
- AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路
AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路一、医疗领域:AI驱动的精准诊疗与效率提升1.医学影像诊断AI算法通过深度学习技术,已实现对X光、CT、MRI等影像的快速分析,辅助医生检测癌症、骨折等疾病。例如,GoogleDeepMind的AI系统在乳腺癌筛查中,误检率比人类专家低9.4%;中国的推想医疗AI系统可在20秒内完成肺部CT扫描分析,为急诊救治争取黄金时间。2.药物研发传统药
- 强化学习之 DQN、Double DQN、PPO
JNU freshman
强化学习强化学习
文章目录通俗理解DQNDoubleDQNPPO结合公式理解通俗理解DQN一个简单的比喻和分步解释来理解DQN(DeepQ-Network,深度Q网络),就像教小朋友学打游戏一样:先理解基础概念:Q学习(Q-Learning)想象你在教一只小狗玩电子游戏(比如打砖块)。小狗每做一个动作(比如“向左移动”或“发射球”),游戏会给出一个奖励(比如得分增加)或惩罚(比如球掉了)。小狗的目标是通过不断尝试,
- 数据不Ready,一切AI Ready都是伪命题
2025年随着DeepSeekR1通用大模型的爆火,企业级AI应用元年正式来临。“AIReady”这个词随之火了起来,但什么是AIReady?是有了大模型接口,就是Ready?是买了GPU服务器,就能跑出结果?显然不是。在袋鼠云看来,AIReady不等于模型Ready,而是数据Ready。没有可用、可控、可理解的数据,AI只能是空中楼阁。AIReady,首先是DataReady。别让AIReady
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep