根据上一篇文章分7部分讲解了基于torch识别分类图片的例子,修改了部分代码,识别指定类型的图片分类识别。
1 生成用于训练的t7文件
-- generate training material t7 files
require 'io'
require 'xlua'
require 'image'
dataNum = 10
imgSize = 32
aImgs = torch.Tensor(batchSize, 3, imgSize, imgSize):zero():float()
label1 = {}
for idx = 1,dataNum do
im_name = string.format('/home/cgy/torch_bak/image/Chinese flag/%02d.jpg',idx)
--xlua.progress(idx, dataNum)
local img1 = image.load(im_name)
aImgs[idx] = image.scale(img1, imgSize, imgSize):float()
label1[idx] = 1
end
print('Save Anchor Images: aImgs.t7: ')
--Create the table to save
label = torch.Tensor(label1)
data_to_write = { data = aImgs, label = label }
--Save the table in the /home
torch.save('/home/cgy/torch_bak/image/Chinese flag/train_TEST.t7', data_to_write)
2 测试待训练的t7文件
-- load test
require 'paths'
require 'nn'
trainset = torch.load('/home/cgy/torch_bak/image/Chinese flag/train_TEST.t7')
trainset.data = trainset.data:double()
for idx = 1,10 do
--print(trainset.label[idx])
itorch.image(trainset.data[idx])
end
3 设置训练参数,生成模型
require 'paths';
require 'nn';
trainset = torch.load('/home/cgy/torch_bak/image/Chinese flag/train_TEST.t7')
setmetatable(trainset,
{__index = function(t,i)
return {t.data[i],t.label[i]}
end}
);
trainset.data = trainset.data:double()
function trainset:size()
return self.data:size(1)
end
---Normalize data
mean = {}
stdv = {}
for i=1,3 do
mean[i] = trainset.data[{ {}, {i}, {}, {} }]:mean()
print('Channel ' .. i .. ', Mean: ' .. mean[i])
trainset.data[{ {}, {i}, {}, {} }]:add(-mean[i])
stdv[i] = trainset.data[{ {}, {i}, {}, {} }]:std()
print('Channel ' .. i .. ', Standard Deviation:' .. stdv[i])
trainset.data[{ {}, {i}, {}, {} }]:div(stdv[i])
end
--数据的预处理
net = nn.Sequential()
--change 1 channel to 3 channels
--net:add(nn.SpatialConvolution(1, 6, 5, 5))
net:add(nn.SpatialConvolution(3, 6, 5, 5))
net:add(nn.ReLU())
net:add(nn.SpatialMaxPooling(2,2,2,2))
net:add(nn.SpatialConvolution(6, 16, 5, 5))
net:add(nn.ReLU())
net:add(nn.SpatialMaxPooling(2,2,2,2))
net:add(nn.View(16*5*5))
net:add(nn.Linear(16*5*5, 120))
net:add(nn.ReLU())
net:add(nn.Linear(120, 84))
net:add(nn.ReLU())
net:add(nn.Linear(84, 10))
net:add(nn.LogSoftMax())
criterion = nn.ClassNLLCriterion();
trainer = nn.StochasticGradient(net, criterion)
trainer.learningRate = 0.001
trainer.maxIteration = 50
trainer:train(trainset)
4 验证训练结果
for idx = 1,10 do
itorch.image(trainset.data[idx])
predicted = net:forward(trainset.data[idx])
print(predicted:exp())
end