ACM模版
这种题除了用 java(代码 One) 外,我就只会套模版(代码 Two)了,写起来贼累,当然,模版出奇迹!
One:
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
private static Scanner cin;
public static void main(String[] args) {
cin = new Scanner(System.in);
BigInteger A, B;
A = cin.nextBigInteger();
B = cin.nextBigInteger();
System.out.println(A.divide(B));
System.out.println(A.mod(B));
}
}
Two:
#include
#include
#include
#include
#include
#include
typedef long long ll;
int powermod(int a, int exp, int moder)
{
int ret = 1;
for (; exp; exp >>= 1)
{
if (exp & 1)
{
ret = 1ll * ret * a % moder;
}
a = 1ll * a * a % moder;
}
return ret;
}
void addminus(int *a, int *b, int &lengtha, int &lengthb, int type)
{
int length = std::max(lengtha, lengthb);
for (int i = 0; i < length; ++i)
{
a[i] += type == 1 ? b[i] : -b[i];
a[i] >= 10 ? (a[i] -= 10, ++a[i + 1]) : a[i] < 0 ? (a[i] += 10, --a[i + 1]) : 0;
}
for (lengtha = length + 1; lengtha && !a[lengtha - 1]; --lengtha) ;
}
struct BigInteger
{
const static int MAXN = 19;
const static int MOD = (119 << 23) + 1; // 998244353
const static int root = 3;
const static int invroot = 332748118;
int a[1 << MAXN];
int length, sig;
BigInteger()
{
memset(a, 0, sizeof(a));
length = sig = 0;
}
void clear()
{
memset(a, 0, sizeof(int) * length);
length = sig = 0;
}
void read()
{
clear();
char ch = getchar();
for (; (ch < '0' || ch > '9') && ch != '-'; ch = getchar()) ;
ch == '-' ? (sig = -1, ch = getchar()) : sig = 1;
for (; ch >= '0' && ch <= '9'; ch = getchar())
{
a[length ++] = ch - '0';
}
std::reverse(a, a + length);
for (; length && !a[length - 1]; --length) ;
sig = length ? sig : 0;
}
void write()
{
if (!sig)
{
return (void)putchar('0');
}
if (sig < 0)
{
putchar('-');
}
for (int i = length - 1; i >= 0; i--)
{
putchar(a[i] + '0');
}
}
template
T tointeger()
{
T ret = 0;
for (int i = length - 1; i >= 0; ++i)
{
ret = ret * 10 + a[i];
}
return ret * sig;
}
bool equal(const BigInteger &p) const &
{
if (sig != p.sig || length != p.length)
{
return false;
}
for (int i = 0; i < length; ++i)
{
if (a[i] != p.a[i])
{
return false;
}
}
return true;
}
bool greater(const BigInteger &p) const &
{
if (sig != p.sig)
{
return sig > p.sig;
}
if (length != p.length)
{
return length > p.length ^ sig == -1;
}
for (int i = length - 1; i >= 0; --i)
{
if (a[i] > p.a[i])
{
return sig > 0;
}
else if (a[i] < p.a[i])
{
return sig < 0;
}
}
return false;
}
void leftshift(int dis)
{
for (int i = length + dis - 1; i >= dis; --i)
{
a[i] = a[i - dis];
}
memset(a, 0, sizeof(int) * dis);
length += dis;
}
void rightshift(int dis)
{
if (dis >= length)
{
return clear();
}
for (int i = 0; i < length - dis; ++i)
{
a[i] = a[i + dis];
}
memset(a + length - dis, 0, sizeof(int) * dis);
length = length - dis > 0 ? length - dis : 0;
}
void addone()
{
sig >= 0 ? ++ a[0] : --a[0];
for (int i = 0; i < length; ++i)
{
if (a[i] < 10 && a[i] >= 0)
{
break;
}
a[i] >= 10 ? (a[i] -= 10, ++a[i + 1]) : (a[i] += 10, --a[i + 1]);
}
if (a[length])
{
++length;
}
if (!a[length - 1])
{
--length;
}
sig = length ? (sig >= 0 ? 1 : -1) : 0;
}
void minusone()
{
sig = -sig;
addone();
sig = -sig;
}
bool absgreaterequal(BigInteger &q)
{
if (length != q.length)
{
return length > q.length;
}
for (int i = length - 1; i >= 0; -- i)
{
if (a[i] > q.a[i])
{
return true;
}
if (a[i] < q.a[i])
{
return false;
}
}
return true;
}
void abs()
{
sig = std::abs(sig);
}
void neg()
{
sig = -sig;
}
void assign(BigInteger &q)
{
memset(a, 0, sizeof(int) * length);
memcpy(a, q.a, sizeof(int) * q.length);
length = q.length;
sig = q.sig;
}
template
void assign(T q)
{
memset(a, 0, sizeof(int) * length);
if (!q)
{
return (void)(sig = length = 0);
}
q < 0 ? sig = -1, q = -q : sig = 1;
length = 0;
for (; q; q /= 10)
{
a[length++] = q % 10;
}
}
void add(BigInteger &q)
{
static BigInteger aux;
if (!q.sig)
{
return ;
}
if (!sig)
{
assign(q);
return ;
}
if (sig == q.sig)
{
addminus(a, q.a, length, q.length, 1);
return ;
}
if (absgreaterequal(q))
{
addminus(a, q.a, length, q.length, -1);
sig = length ? sig : 0;
return ;
}
aux.assign(q);
addminus(q.a, a, q.length, length, -1);
assign(q);
q.assign(aux);
}
void minus(BigInteger &q)
{
q.neg();
add(q);
q.neg();
}
void NTT(int *a, int length, int type)
{
int len = -1;
for (int x = length; x; ++len, x >>= 1) ;
for (int i = 1, j = 0; i < length - 1; ++i)
{
for (int s = length; j ^= s >>= 1, ~j & s; ) ;
if (i < j)
{
std::swap(a[i], a[j]);
}
}
for (int i = 1; i <= len; ++ i)
{
int unit = powermod(type == 1 ? root : invroot, (MOD - 1) >> i, MOD), szk = 1 << (i - 1);
for (int j = 0; j < length; j += 1 << i)
{
for (int k = j, w = 1; k < j + szk; ++k)
{
int s = a[k], t = 1ll * w * a[k + szk] % MOD;
a[k] = s + t >= MOD ? s + t - MOD : s + t;
a[k + szk] = s - t < 0 ? s - t + MOD : s - t;
w = 1ll * w * unit % MOD;
}
}
}
if (type == 1)
{
return ;
}
int inv = powermod(length, MOD - 2, MOD);
for (int i = 0; i < length; ++ i)
{
a[i] = 1ll * a[i] * inv % MOD;
}
}
void mult(BigInteger &q)
{
static int aux[1 << MAXN];
if (!sig || !q.sig)
{
return clear();
}
int n = length + q.length;
int lengthans = 1;
for (; lengthans < n; lengthans <<= 1) ;
memcpy(aux, q.a, sizeof(int) * lengthans);
NTT(a, lengthans, 1);
NTT(aux, lengthans, 1);
for (int i = 0; i < lengthans; i++)
{
a[i] = 1ll * a[i] * aux[i] % MOD;
}
NTT(a, lengthans, -1);
for (int i = 0; i < n - 1; i++)
{
a[i + 1] += a[i] / 10;
a[i] %= 10;
}
length = n;
for (; length && !a[length - 1]; --length) ;
sig *= q.sig;
}
void mult(int q)
{
if (!q || !sig)
{
return clear();
}
ll x = std::abs(q), remain = 0;
for (int i = 0; i < length; ++i)
{
remain += a[i] * x;
a[i] = remain % 10;
remain /= 10;
}
a[length] = (int)remain;
for (; a[length]; ++length)
{
a[length + 1] = a[length] / 10;
a[length] %= 10;
}
for (; length && !a[length - 1]; --length) ;
sig *= q < 0 ? -1 : 1;
}
void power(int exp)
{
static BigInteger aux;
if (!sig)
{
return ;
}
aux.assign<int> (1);
for (; exp; exp >>= 1)
{
if (exp & 1)
{
aux.mult(*this);
}
aux.mult(aux);
}
assign(aux);
}
void divide(BigInteger &q)
{
static BigInteger aux, aux1;
if (!sig || !q.sig)
{
return ;
}
if (length < q.length)
{
return clear();
}
bool neg1 = sig == 1, neg2 = q.sig == 1;
abs(), q.abs();
int num = 0;
for (int i = q.length - 1; i >= q.length - 3; --i)
{
(num *= 10) += i >= 0 ? q.a[i] : 0;
}
num = 100000 / num;
int nowprecision = 1;
aux.assign<int> (num);
for (; nowprecision <= length - q.length; nowprecision <<= 1)
{
aux1.clear();
aux1.length = (nowprecision << 1) + 3, aux1.sig = 1;
for (int i = q.length - aux1.length; i < q.length; ++i)
{
aux1.a[i - q.length + aux1.length] = i >= 0 ? q.a[i] : 0;
}
aux1.mult(aux), aux1.rightshift(nowprecision + 2);
aux1.mult(aux), aux1.rightshift(nowprecision + 2);
aux.mult(2);
aux.leftshift(nowprecision);
aux.minus(aux1);
}
aux.mult(*this);
aux.rightshift(q.length + nowprecision + 1);
aux1.assign(aux);
aux1.mult(q);
minus(aux1);
int flag = absgreaterequal(q) ? 2 : sig < 0 ? 1 : 0;
assign(aux);
if (flag)
{
flag == 1 ? minusone() : addone();
}
if (!neg2)
{
q.neg();
}
sig *= neg1 ^ neg2 ? -1 : 1;
}
int divide(int q)
{
if (!sig || !q)
{
return 0;
}
ll remain = 0, x = std::abs(q);
for (int i = length - 1; i >= 0; --i)
{
remain = remain * 10 + a[i];
a[i] = (int)(remain / x);
remain %= x;
}
for (; length && !a[length - 1]; --length) ;
remain *= sig;
sig *= q < 0 ? -1 : 1;
if (!length)
{
sig = 0;
}
return (int)remain;
}
void sqrt()
{
static BigInteger aux, aux1, aux2;
if (sig <= 0)
{
return ;
}
int num = 0;
for (int i = length - 1; i >= length - 8; --i)
{
(num *= 10) += i >= 0 ? a[i] : 0;
}
ll x = length & 1 ? 10000000000000ll : 100000000000000ll;
num = std::sqrt(1.0 * x / num);
int nowprecision = 2;
aux.assign<int> (num);
for (; nowprecision <= (length >> 1) + 1; nowprecision = (nowprecision << 1) - 1)
{
aux1.clear(), aux2.clear();
aux1.length = (nowprecision << 1) + 1 + (length & 1), aux1.sig = 1;
for (int i = length - aux1.length; i < length; ++i)
{
aux1.a[i - length + aux1.length] = i >= 0 ? a[i] : 0;
}
aux1.mult(aux), aux1.rightshift(nowprecision + 1);
aux1.mult(aux), aux1.rightshift(nowprecision + 1);
aux1.divide(2);
aux2.length = (nowprecision + 1) << 1, aux2.sig = 1;
aux2.a[aux2.length - 1] = 1, aux2.a[aux2.length - 2] = 5;
aux2.minus(aux1);
aux.mult(aux2);
aux.rightshift(nowprecision + 2);
}
aux.mult(*this);
aux.rightshift((length >> 1) + nowprecision + 1);
aux1.assign(aux);
aux1.mult(aux1);
aux2.assign(*this);
aux2.mult(2);
minus(aux1);
int flag = greater(aux2) ? 2 : sig < 0 ? 1 : 0;
assign(aux);
if (flag)
{
flag == 1 ? minusone() : addone();
}
}
};
BigInteger a, b, c;
int main()
{
a.read();
b.read();
c.assign(a);
a.divide(b);
a.write();
putchar('\n');
a.mult(b);
c.minus(a);
c.write();
putchar('\n');
return 0;
}