import tensorflow as tf
import numpy as np
#定义一个定义层的函数,输入参数为inputs数据,输入维度,输出维度,激活函数名称
def add_layer(inputs, in_size, out_size, activation_function=None):
#创建权重变量,使用random_normal函数,将产生均值为0,方差为1的高斯分布数据,
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
#创建偏置值,偏置值最好不为0
Biases = tf.Variable(tf.zeros([1,out_size])+0.1)
#tf中的tensor张量乘法和加法,这里使用+和tf.add等价,+会默认转换为tf.add
Wx_plus_b = tf.matmul(inputs,Weights) + Biases
if activation_function==None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
#得到-1到1之间的300个等分数,生成初始是(300,),通过np.newaxis增加一个维度,使得维度变为(300,1)
x_data = np.linspace(-1,1,300)[:,np.newaxis]
#通过np.random.normal()函数生成平均值为0,方差为0.05的高斯分布
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data)-0.5+noise
#创建占位符,当输入需要时可以按照需要输入数据
xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])
#添加两层网络
l1 = add_layer(xs,1,10, activation_function = tf.nn.relu)
prediction = add_layer(l1, 10, 1, activation_function= None)
#计算loss值,其中reduce_sum和reduce_mean都可以使用reduction_indices=[0]或[1]表示列和行进行操作
#loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
cost = tf.square(ys-prediction)
#loss = tf.reduce_sum(cost, reduction_indices=[1])
loss1 = tf.reduce_mean(cost)
#使用GradientDescentOptimizer优化方法使得loss minimize
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss1)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data, ys:y_data})
if i%50==0:
#print(sess.run(loss,feed_dict={xs:x_data, ys:y_data}))
#print(sess.run(cost, feed_dict={xs:x_data, ys:y_data}))
#通过feed_dict={字典}的方式将数据填充到占位符中
print(sess.run(loss1, feed_dict={xs:x_data, ys:y_data}))
#print(loss)