读NeurIPS 2018 accepted paper list的十点感想

  • 一.图模型graph很火,至少有45篇graph文章和4篇topic方面的文章。
  • 二.变分(Variational)非常火 ,至少有35篇的文章。
  • 三.现在机器学习慢慢朝着推理(39篇Inference和6篇reason)方向发展。
  • 四.强化学习的文章也比较多,41篇reinforce,5篇reward,22篇policy和5篇Imitation Learning。
  • 五.11篇元学习(meta-learning)的文章,7篇vc维(pac-learning)理论方面的文章,9篇可解释性(interpret)方面的文章。
  • 六.至少63篇关于GAN网络方面的文章。
  • 七.8篇video和11篇3D方面的文章,video understanding可能是下一个需要突破的task。
  • 八.5篇脉冲神经网络(spiking Neural Networks)方面的文章,3篇Capsule方面的文章。
  • 九.有大概19篇跨媒体(文本与语音,文本与视觉以及视觉关系)方面的文章,朝着reason,knowledge和graph方向发展。
    • 1.Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
    • 2.LinkNet: Relational Embedding for Scene Graph
    • 3.Disentangling Learning for CaptionBot and DrawingBot
    • 4.Dialog-based Interactive Image Retrieval
    • 5.Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation
    • 6.Hybrid Knowledge Routed Modules for Large-scale Object Detection
    • 7.Partially-Supervised Image Captioning
    • 8.Learning to Specialize with Knowledge Distillation for Visual Question Answering
    • 9.Chain of Reasoning for Visual Question Answering
    • 10.Learning Conditioned Graph Structures for Interpretable Visual Question Answering
    • 11.Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering
    • 12.Overcoming Language Priors in Visual Question Answering with Adversarial Regularization
    • 13.Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis
    • 14.Answerer in Questioner’s Mind: Information Theoretic Approach to Goal-Oriented Visual Dialog
    • 15.Speaker-Follower Models for Vision-and-Language Navigation
    • 16.A Neural Compositional Paradigm for Image Captioning
    • 17.Weakly Supervised Dense Event Captioning in Videos
    • 18.Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural Language
    • 19.Unsupervised Cross-Modal Alignment of Speech and Text Embedding Spaces
  • 十.Yoshua Bengio,Yann LeCu和Geoffrey E Hinton三位大仙共有7篇文章,有必要关注一下meta-learning。
    • 1.Image-to-image translation for cross-domain disentanglement, Yoshua Bengio。
    • 2.Dendritic cortical microcircuits approximate the backpropagation algorithm , Yoshua Bengio。
    • 3.Bayesian Model-Agnostic Meta-Learning, Yoshua Bengio。
    • 4.Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding, Yoshua Bengio。
    • 5.MetaGAN: An Adversarial Approach to Few-Shot Learning, Yoshua Bengio。
    • 6.GLoMo: Unsupervised Learning of Transferable Relational Graphs, Yann LeCun。
    • 7.Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures, Geoffrey E Hinton。

你可能感兴趣的:(机器学习)