- RAG数据嵌入和重排序:如何选择合适的模型
从零开始学习人工智能
深度学习
RAG数据嵌入和重排序:如何选择合适的模型在自然语言处理(NLP)领域,Retrieval-AugmentedGeneration(RAG)模型已经成为一种强大的工具,用于结合检索和生成能力来处理复杂的语言任务。RAG模型的核心在于两个关键步骤:数据嵌入(Embedding)和重排序(Re-ranking)。这两个步骤的选择和优化对于模型的性能至关重要。本文将探讨如何选择合适的模型来实现高效的数据
- 从零开始开发微信小程序:全面指南
百态老人
经验分享微信小程序小程序
学习制作微信小程序,希望通过这次学习能够实现跨平台的统一开发,从而提高自己的编程和开发能力。第一部分需要事先准备的工具和环境:一、工具:1、微信开发者工具:用于开发、调试和预览微信小程序。微信开发者工具是专门为微信小程序开发提供的集成开发环境(IDE)。它的主要功能包括:1)开发:可以编写、编辑、管理小程序的代码,支持多种编程语言和框架(如JavaScript、TypeScript、WXML、WX
- 115.HarmonyOS NEXT 跑马灯组件详解(三):MarqueeSection基础结构
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT跑马灯组件详解(三):MarqueeSection基础结构效果演示1.组件概述MarqueeSection是一个实现文本滚动效果的自定义组件,主要用于显示超出显示区域的文本内容。1.1基本结构@Componentexportstruct
- mac怎么查python的版本_Mac下如何查看Python的版本?
A格调
mac怎么查python的版本
[1,terminal:input:whichpython2,terminal:input:python--->importsys---->printsys.pathok!goodluck!!]问题:Mac下如何查看Python的版本?系统:MacOSX软件:Python编程语言:Python[Mac配置Python开发环境(Eclipse+Pydev+Python)1、首先下载MAC版的64位E
- 理解Akamai EdgeGrid认证在REST API中的应用
在我们高度互联的世界中,快速且安全地将内容传递给用户是重中之重。Akamai就是应运而生的佼佼者。作为内容分发和云服务的领导者,他们提供了一个名为EdgeGrid的平台,帮助使您的Web应用更加快速、可靠和安全。但是,强大的功能伴随着强大的责任——或者说,在这种情况下,是对安全性的高度要求。这就是AkamaiEdgeGrid认证(Auth)的用武之地。什么是AkamaiEdgeGrid认证?可以把
- Python中使用vlc库实现视频播放功能
小白教程
pythonpython音视频开发语言Python视频播放功能Python中使用vlc库vlc视频播放
文章目录前言1.环境准备1.1Python安装1.2选择Python开发环境1.3安装必要库2.基础播放示例3.常用播放控制功能4.事件监听5.播放网络流媒体6.结合GUI库制作视频播放器(以Tkinter为例)前言本教程主要包含打开文件、播放和停止按钮,能够实现基本的视频播放控制功能。1.环境准备1.1Python安装访问Python官方网站,根据你的操作系统(Windows、Mac或Linux
- unitree
Matrixart
ubuntu
Unitreeubuntu18.04首先要安装好ubuntu18.04系统,然后开始安装显卡驱动和cuda以及cudnn,这里要注意版本对应,我是3090的显卡,安装的显卡版本是520,然后cuda的版本是11.7,cudnn的版本是8.5.0(要对应cuda版本)。具体流程可以按照1里面的走,最后记得在环境中写一下#写入环境sudogedit~/.bashrcexportPATH=/usr/lo
- 高抗干扰数显芯片VK16D32恒流数码管驱动数显驱动器厂家
后端
VK16D32是一颗基于I2C通讯协议的LED显示面板恒流驱动IC,支持最多8段×12位输出,且可以通过寄存器配置,调节扫描的位数,从而获得更大的单点驱动电流。传统的LED显示面板恒压驱动IC,当点亮的LED数量变化或者电源电压变化时,单颗LED电流会发生变化,从而会影响显示效果;而VK16D32采用了恒流驱动设计,当显示模式配置好后,每颗LED的电流就恒定不变,不会因点亮的LED数量变化或电源电
- Singleton 单例模式
后端
一、实现在javascript中,实现一个单例模式可以用一个变量来标志当前的类已经创建过对象,如果下次获取当前类的实例时,直接返回之前创建的对象即可,如下://定义一个类functionSingleton(name){this.name=name;this.instance=null;}//原型扩展类的一个方法getName()Singleton.prototype.getName=functio
- PyTorch 模型剪枝实例教程一、非结构化剪枝
小风_
模型压缩与加速pytorchpytorch深度学习人工智能
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)4.总结目前大部分最先进的(SOTA)深度学习技术虽然效果好,但由于其模型参数量和计算量过高,难以用于实际部署。而众所周知,生物神经网络使用高效的稀疏连接(生物大脑神经网络balabala啥的都是稀疏连接的),考虑到这一点,为了减少内存、容量和硬件消耗,同时又不牺牲模型预测的精度,在设备上部署轻量级模型,并通过私有的设备
- HarmonyOS NEXT hiLog日志类封装
架构教育
在鸿蒙原生开发中,推荐使用hiLog日志来打印我们需要查看的数据,在写hiLog日志时,需要入参四个参数来设置hilog.info(0x0000,'testTag','%{public}s','AbilityonWindowStageCreate');其中第一个参数domain,是不需要处理的,按照默认值来展示就好;第二个参数prefix,在封装类中我们可以统一设置同一个值,方便检索同一个应用下的
- 行业首个AI课上线!粉笔战略布局加速技术商业化进程
量子位教育
继推出AI老师后,粉笔AI产品矩阵进一步扩充。粉笔宣布,将于3月17日上线基于自研垂域大模型打造的“AI刷题系统班”,为用户提供行测、申论全科目覆盖的一站式高效备考支持。粉笔介绍,AI刷题系统班以AI为主导,采用“名师+AI数字人老师”双师结合模式,资深教师直播授课,AI教师启发式教学,具备DeepSeek同款深度思考能力,由数字人老师全程伴学,提供交互式学习体验,依托AI算法实现用户全周期学习管
- Mac查看python安装版本
petit_wu
Pythonpythonmac
1、在Launchpad中打开系统信息2、在“软件“->“应用程序“菜单下,能找到当前Python的安装信息
- 部署微调框架LLaMA-Factory
高原魔女
llama
LLaMAFactory1.我们在ChatGLM3的github官方页面上能看到对LLaMA-Factory的推荐2.LLaMAFactorygithub链接hiyouga/LLaMA-Factory:UnifyEfficientFine-Tuningof100+LLMs(github.com)步骤一:安装LLaMAFactory进入DSW开发环境。登录PAI控制台。在页面左上方,选择DSW实例所
- 宇树激光雷达L1上手测试
力特高
linux自动驾驶机器人自动化
因为工作中低成本三维空间扫描的需求,在同事偶尔推荐下知道了宇树L1这款激光雷达,不得不说小巧的设计,0.05m的最小测距距离,360°*90°的FOV,以及最最最重要的1600多的价格无一不打动我。于是行动起来联系厂家,首先是想试用(白嫖)一下,然鹅被告知“雷达已经发布很久了,淘宝上就有销售,不提供试用服务”。确实有道理,咱又不缺(这点)钱,于是提了采购申请。。。发货速度很快,采购下单当天,卖家就
- 115.HarmonyOS NEXT 跑马灯组件详解(三):MarqueeSection基础结构
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT跑马灯组件详解(三):MarqueeSection基础结构效果演示1.组件概述MarqueeSection是一个实现文本滚动效果的自定义组件,主要用于显示超出显示区域的文本内容。1.1基本结构@Componentexportstruct
- 105.HarmonyOS NEXT 跑马灯组件详解(一): 组件概述与架构设计
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT跑马灯组件详解(一):组件概述与架构设计效果演示1.组件简介跑马灯(Marquee)组件是一个用于展示滚动文本的UI组件,主要用于处理文本内容超出显示区域时的展示问题。当文本内容过长时,组件会自动实现文本的循环滚动效果,并在每次循环结束
- 104.HarmonyOS NEXT跑马灯组件教程:实际应用场景与最佳实践
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT跑马灯组件教程:实际应用场景与最佳实践效果演示1.跑马灯组件应用场景概述跑马灯组件是HarmonyOSNEXT中一个非常实用的UI组件,它可以在有限的空间内展示超出显示区域的文本内容。本文将详细介绍跑马灯组件的实际应用场景和最佳实践,帮
- python安装哪个版本好win11,安装python选择哪个版本
S1112_
sqlite
这篇文章主要介绍了python安装哪个版本好win11,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获,下面让小编带着大家一起了解一下。Sourcecodedownload:本文相关源码前言跟其他编程语言一样,Python发展至今,已经发布了很多版本。有很多小伙伴,在刚接触Python时,基本都会纠结一个问题:应该安装哪个版本的Python好呢?下面小编给大家一些建议用p
- 【 <二> 丹方改良:Spring 时代的 JavaWeb】之 Spring Boot 的自动配置:约定优于配置的设计美学
Foyo Designer
springspringbootjavaHikariCPLogback
点击此处查看合集https://blog.csdn.net/foyodesigner/category_12907601.html?fromshare=blogcolumn&sharetype=blogcolumn&sharerId=12907601&sharerefer=PC&sharesource=FoyoDesigner&sharefrom=from_link一、SpringBoot的自动配
- CSS竟然开始支持函数了!编程语言的未来能否在此掀起波澜?
前端javascript
ReactHook深入浅出CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读当我第一次看到CSS即将支持原生函数时?没错,朋友,这是真的!如今,CSS也开始拥抱函数特性了——那些曾坚称CSS不配称作“编程语言”的人,现在或许得重新考虑一下了。好了,兴奋之余,我们还是先稳一下,深入了解它的具体内容吧!基础知识:函数的定义和调用试想一下,你正在给网页中的多个元素添加相同的虚线边框。通常
- SvelteKit 最新中文文档教程(4)—— 表单 actions
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- 代码构建-maven-排除某些大的依赖lib
勤则弊除
mavenjava
${project.artifactId}org.springframework.bootspring-boot-maven-plugin ZIP具体包名具体artifact名repackageorg.apache.maven.pluginsmaven-dependency-plugin 3.1.2copy-dependenciespackagecop
- 优化深度学习模型:PyTorch中的模型剪枝技术详解
代码之光_1980
深度学习pytorch剪枝
标题:优化深度学习模型:PyTorch中的模型剪枝技术详解在深度学习领域,模型剪枝是一种提高模型效率和性能的技术。通过剪枝,我们可以去除模型中的冗余权重,从而减少模型的复杂度和提高运算速度,同时保持或甚至提升模型的准确率。本文将详细介绍如何在PyTorch框架中实现模型剪枝,并提供相应的代码示例。1.模型剪枝的基本概念模型剪枝主要分为两种类型:结构化剪枝和非结构化剪枝。结构化剪枝通常指的是剪除整个
- Dropout: 一种减少神经网络过拟合的技术
冰蓝蓝
自然语言处理神经网络人工智能深度学习
在深度学习中,过拟合是一个常见的问题,尤其是在模型复杂度较高或训练数据较少的情况下。过拟合意味着模型在训练数据上表现得很好,但在未见过的数据上表现不佳,即泛化能力差。为了解决这个问题,研究者们提出了多种正则化技术,其中之一就是Dropout。什么是Dropout?Dropout是一种正则化技术,由Hinton和他的学生在2012年提出。它通过在训练过程中随机“丢弃”(即暂时移除)网络中的一些神经元
- 模型保存与加载:PyTorch中的实践指南
冰蓝蓝
自然语言处理pytorch人工智能python
在深度学习项目中,模型的保存和加载是一个至关重要的步骤。它不仅有助于在训练过程中保存进度,还可以在训练完成后部署模型。PyTorch提供了灵活的方式来保存和加载模型,本文将详细介绍这些方法。模型保存在PyTorch中,有两种主要的模型保存方法:保存整个模型和仅保存模型参数。保存整个模型保存整个模型意味着保存模型的结构和参数。这种方法简单直接,但文件体积较大,且依赖于模型的具体实现。importto
- 深度学习中的注意力机制:解锁智能模型的新视角
冰蓝蓝
深度学习深度学习人工智能
在人工智能的快速发展中,深度学习模型已经成为了处理复杂数据和任务的主力军。然而,随着数据量的激增和任务的复杂化,传统的深度学习模型面临着效率和性能的双重挑战。在这样的背景下,注意力机制(AttentionMechanism)应运而生,它不仅提升了模型的处理能力,还为深度学习领域带来了新的研究视角。什么是注意力机制?注意力机制是一种受人类视觉注意力启发的技术,它允许模型在处理大量信息时,能够动态地聚
- torch.unsqueeze:灵活调整张量维度的利器
冰蓝蓝
transformertransformer深度学习
在深度学习框架PyTorch中,张量(Tensor)是最基本的数据结构,它类似于NumPy中的数组,但可以在GPU上运行。在日常的深度学习编程中,我们经常需要调整张量的维度以适应不同的操作和层。torch.unsqueeze函数就是PyTorch提供的一个非常有用的工具,用于在指定位置增加张量的维度。本文将详细介绍torch.unsqueeze的用法和一些实际应用场景。什么是torch.unsqu
- 群体智能优化算法-GOOSE优化算法(含Matlab源代码)
HR Zhou
算法matlab开发语言群体智能优化优化
摘要GOOSE(GooseOptimizationAlgorithm)是一种基于大雁(Goose)在自然界中觅食与捕猎行为所启发的元启发式算法。它借助大雁的飞行速度、加速度、随机跳跃等策略,以实现对搜索空间进行全局探索和局部开发。通过设置自由落体速度(FreeFallSpeed)、声音传播距离(SoundDistance)与时间平均(TimeAverage)等多种机制,GOOSE在处理复杂的高维非
- C#—【特性详解以及自定义特性和通过反射读取特性】
_Csharp
C#基础-高阶-实战知识点c#开发语言特性反射自定义特性
C#—【特性详解以及自定义特性和通过反射读取特性】目录C#—【特性详解以及自定义特性和通过反射读取特性】介绍:特性可以用于多种用途,包括但不限于:特性的分类:特性的主要用途(举一些直观例子)1.标记代码,让框架自动处理2.数据验证(表单/模型校验)3.控制序列化行为4.生成文档(如API接口说明)5.实现AOP(面向切面编程)为什么用特性而不用其他方法?日常开发中的高频场景一句话总结常见预定义特性
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,