三分钟看懂一致性哈希算法

受一篇“五分钟看懂”的启发,来个哗众取宠的标题

一致性哈希算法,作为分布式计算的数据分配参考,比传统的取模,划段都好很多。

在电信计费中,可以作为多台消息接口机和在线计费主机的分配算法,根据session_id来分配,这样当计费主机动态伸缩的时候,因为session_id缓存缺失而需要放通的会话,会明显减少。


传统的取模方式

例如10条数据,3个节点,如果按照取模的方式,那就是

node a: 0,3,6,9

node b: 1,4,7

node c: 2,5,8

 

当增加一个节点的时候,数据分布就变更为

node a:0,4,8

node b:1,5,9

node c: 2,6

node d: 3,7

 

总结:数据3,4,5,6,7,8,9在增加节点的时候,都需要做搬迁,成本太高

 

一致性哈希方式

最关键的区别就是,对节点和数据,都做一次哈希运算,然后比较节点和数据的哈希值,数据取和节点最相近的节点做为存放节点。这样就保证当节点增加或者减少的时候,影响的数据最少。

还是拿刚刚的例子,(用简单的字符串的ascii码做哈希key):

十条数据,算出各自的哈希值

0:192

1:196

2:200

3:204

4:208

5:212

6:216

7:220

8:224

9:228

 

有三个节点,算出各自的哈希值

node a: 203

node g: 209

node z: 228

 

这个时候比较两者的哈希值,如果大于228,就归到前面的203,相当于整个哈希值就是一个环,对应的映射结果:

node a: 0,1,2

node g: 3,4

node z: 5,6,7,8,9

 

这个时候加入node n, 就可以算出node n的哈希值:

node n: 216

 

这个时候对应的数据就会做迁移:

node a: 0,1,2

node g: 3,4

node n: 5,6

node z: 7,8,9

 

这个时候只有5和6需要做迁移

另外,这个时候如果只算出三个哈希值,那再跟数据的哈希值比较的时候,很容易分得不均衡,因此就引入了虚拟节点的概念,通过把三个节点加上ID后缀等方式,每个节点算出n个哈希值,均匀的放在哈希环上,这样对于数据算出的哈希值,能够比较散列的分布(详见下面代码中的replica)

 

通过这种算法做数据分布,在增减节点的时候,可以大大减少数据的迁移规模。

 

下面转载的哈希代码,已经将gen_key改成上述描述的用字符串ascii相加的方式,便于测试验证。


import md5
class HashRing(object):
    def __init__(self, nodes=None, replicas=3):
        """Manages a hash ring.
        `nodes` is a list of objects that have a proper __str__ representation.
        `replicas` indicates how many virtual points should be used pr. node,
        replicas are required to improve the distribution.
        """
        self.replicas = replicas
        self.ring = dict()
        self._sorted_keys = []
        if nodes:
            for node in nodes:
                self.add_node(node)
    def add_node(self, node):
        """Adds a `node` to the hash ring (including a number of replicas).
        """
        for i in xrange(0, self.replicas):
            key = self.gen_key('%s:%s' % (node, i))
            print "node %s-%s key is %ld" % (node, i, key)
            self.ring[key] = node
            self._sorted_keys.append(key)
        self._sorted_keys.sort()
    def remove_node(self, node):
        """Removes `node` from the hash ring and its replicas.
        """
        for i in xrange(0, self.replicas):
            key = self.gen_key('%s:%s' % (node, i))
            del self.ring[key]
            self._sorted_keys.remove(key)
    def get_node(self, string_key):
        """Given a string key a corresponding node in the hash ring is returned.
        If the hash ring is empty, `None` is returned.
        """
        return self.get_node_pos(string_key)[0]
    def get_node_pos(self, string_key):
        """Given a string key a corresponding node in the hash ring is returned
        along with it's position in the ring.
        If the hash ring is empty, (`None`, `None`) is returned.
        """
        if not self.ring:
            return None, None
        key = self.gen_key(string_key)
        nodes = self._sorted_keys
        for i in xrange(0, len(nodes)):
            node = nodes[i]
            if key <= node:
                print "string_key %s key %ld" % (string_key, key) 
                print "get node %s-%d " % (self.ring[node], i)
                return self.ring[node], i
        return self.ring[nodes[0]], 0
    def print_ring(self):
        if not self.ring:
            return None, None
        nodes = self._sorted_keys
        for i in xrange(0, len(nodes)):
            node = nodes[i]
            print "ring slot %d is node %s, hash vale is %s" % (i, self.ring[node], node)
    def get_nodes(self, string_key):
        """Given a string key it returns the nodes as a generator that can hold the key.
        The generator is never ending and iterates through the ring
        starting at the correct position.
        """
        if not self.ring:
            yield None, None
        node, pos = self.get_node_pos(string_key)
        for key in self._sorted_keys[pos:]:
            yield self.ring[key]
        while True:
            for key in self._sorted_keys:
                yield self.ring[key]
    def gen_key(self, key):
        """Given a string key it returns a long value,
        this long value represents a place on the hash ring.
        md5 is currently used because it mixes well.
        """
        m = md5.new()
        m.update(key)
        return long(m.hexdigest(), 16)
        """
        hash = 0
        for i in xrange(0, len(key)):
            hash += ord(key[i]) 
        return hash
        """


memcache_servers = ['a',
                   'g',
                    'z']
ring = HashRing(memcache_servers,1)
ring.print_ring()
server = ring.get_node('0000')
server = ring.get_node('1111')
server = ring.get_node('2222')
server = ring.get_node('3333')
server = ring.get_node('4444')
server = ring.get_node('5555')
server = ring.get_node('6666')
server = ring.get_node('7777')
server = ring.get_node('8888')
server = ring.get_node('9999')

print '----------------------------------------------------------'

memcache_servers = ['a',
                   'g',
                   'n',
                    'z']
ring = HashRing(memcache_servers,1)
ring.print_ring()
server = ring.get_node('0000')
server = ring.get_node('1111')
server = ring.get_node('2222')
server = ring.get_node('3333')
server = ring.get_node('4444')
server = ring.get_node('5555')
server = ring.get_node('6666')
server = ring.get_node('7777')
server = ring.get_node('8888')
server = ring.get_node('9999')



你可能感兴趣的:(三分钟看懂一致性哈希算法)