李航《统计学习方法》——第五章 决策树模型

由于网上资料很多,这里就不再对算法原理进行推导,仅给出博主用Python实现的代码,供大家参考

适用问题:多类分类

三个步骤:特征选择、决策树的生成和决策树的剪枝

常见的决策树算法有

  • ID3:特征划分基于信息增益
  • C4.5:特征划分基于信息增益比
  • CART:特征划分基于基尼指数

测试数据集:train.csv

ID3算法代码


# encoding=utf-8

import cv2
import time
import numpy as np
import pandas as pd


from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score

# 二值化
def binaryzation(img):
    cv_img = img.astype(np.uint8)
    cv2.threshold(cv_img,50,1,cv2.THRESH_BINARY_INV,cv_img)
    return cv_img

def binaryzation_features(trainset):
    features = []

    for img in trainset:
        img = np.reshape(img,(28,28))
        cv_img = img.astype(np.uint8)

        img_b = binaryzation(cv_img)
        # hog_feature = np.transpose(hog_feature)
        features.append(img_b)

    features = np.array(features)
    features = np.reshape(features,(-1,feature_len))

    return features


class Tree(object):
    def __init__(self,node_type,Class = None, feature = None):
        self.node_type = node_type  # 节点类型(internal或leaf)
        self.dict = {} # dict的键表示特征Ag的可能值ai,值表示根据ai得到的子树 
        self.Class = Class  # 叶节点表示的类,若是内部节点则为none
        self.feature = feature # 表示当前的树即将由第feature个特征划分(即第feature特征是使得当前树中信息增益最大的特征)

    def add_tree(self,key,tree):
        self.dict[key] = tree

    def predict(self,features): 
        if self.node_type == 'leaf' or (features[self.feature] not in self.dict):
            return self.Class

        tree = self.dict.get(features[self.feature])
        return tree.predict(features)

# 计算数据集x的经验熵H(x)
def calc_ent(x):
    x_value_list = set([x[i] for i in range(x.shape[0])])
    ent = 0.0
    for x_value in x_value_list:
        p = float(x[x == x_value].shape[0]) / x.shape[0]
        logp = np.log2(p)
        ent -= p * logp

    return ent

# 计算条件熵H(y/x)
def calc_condition_ent(x, y):
    x_value_list = set([x[i] for i in range(x.shape[0])])
    ent = 0.0
    for x_value in x_value_list:
        sub_y = y[x == x_value]
        temp_ent = calc_ent(sub_y)
        ent += (float(sub_y.shape[0]) / y.shape[0]) * temp_ent

    return ent

# 计算信息增益
def calc_ent_grap(x,y):
    base_ent = calc_ent(y)
    condition_ent = calc_condition_ent(x, y)
    ent_grap = base_ent - condition_ent

    return ent_grap

# ID3算法
def recurse_train(train_set,train_label,features):

    LEAF = 'leaf'
    INTERNAL = 'internal'

    # 步骤1——如果训练集train_set中的所有实例都属于同一类Ck
    label_set = set(train_label)
    if len(label_set) == 1:
        return Tree(LEAF,Class = label_set.pop())

    # 步骤2——如果特征集features为空
    class_len = [(i,len(list(filter(lambda x:x==i,train_label)))) for i in range(class_num)] # 计算每一个类出现的个数
    (max_class,max_len) = max(class_len,key = lambda x:x[1])

    if len(features) == 0:
        return Tree(LEAF,Class = max_class)

    # 步骤3——计算信息增益,并选择信息增益最大的特征
    max_feature = 0
    max_gda = 0
    D = train_label
    for feature in features:
        # print(type(train_set))
        A = np.array(train_set[:,feature].flat) # 选择训练集中的第feature列(即第feature个特征)
        gda=calc_ent_grap(A,D)
        if gda > max_gda:
            max_gda,max_feature = gda,feature

    # 步骤4——信息增益小于阈值
    if max_gda < epsilon:
        return Tree(LEAF,Class = max_class)

    # 步骤5——构建非空子集
    sub_features = list(filter(lambda x:x!=max_feature,features))
    tree = Tree(INTERNAL,feature=max_feature)

    max_feature_col = np.array(train_set[:,max_feature].flat)
    feature_value_list = set([max_feature_col[i] for i in range(max_feature_col.shape[0])]) # 保存信息增益最大的特征可能的取值 (shape[0]表示计算行数)
    for feature_value in feature_value_list:

        index = []
        for i in range(len(train_label)):
            if train_set[i][max_feature] == feature_value:
                index.append(i)

        sub_train_set = train_set[index]
        sub_train_label = train_label[index]

        sub_tree = recurse_train(sub_train_set,sub_train_label,sub_features)
        tree.add_tree(feature_value,sub_tree)

    return tree

def train(train_set,train_label,features):
    return recurse_train(train_set,train_label,features)

def predict(test_set,tree):
    result = []
    for features in test_set:
        tmp_predict = tree.predict(features)
        result.append(tmp_predict)
    return np.array(result)


class_num = 10  # MINST数据集有10种labels,分别是“0,1,2,3,4,5,6,7,8,9”
feature_len = 784  # MINST数据集每个image有28*28=784个特征(pixels)
epsilon = 0.001  # 设定阈值

if __name__ == '__main__':

    print("Start read data...")

    time_1 = time.time()

    raw_data = pd.read_csv('../data/train.csv', header=0)  # 读取csv数据
    data = raw_data.values

    imgs = data[::, 1::]
    features = binaryzation_features(imgs) # 图片二值化(很重要,不然预测准确率很低)
    labels = data[::, 0]

    # 避免过拟合,采用交叉验证,随机选取33%数据作为测试集,剩余为训练集
    train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.33, random_state=0)
    time_2 = time.time()
    print('read data cost %f seconds' % (time_2 - time_1))

    # 通过ID3算法生成决策树
    print('Start training...')
    tree = train(train_features,train_labels,list(range(feature_len)))
    time_3 = time.time()
    print('training cost %f seconds' % (time_3 - time_2))

    print('Start predicting...')
    test_predict = predict(test_features,tree)
    time_4 = time.time()
    print('predicting cost %f seconds' % (time_4 - time_3))

    # print("预测的结果为:")
    # print(test_predict)
    for i in range(len(test_predict)):
        if test_predict[i] == None:
            test_predict[i] = epsilon
    score = accuracy_score(test_labels, test_predict)
print("The accruacy score is %f" % score)

代码可从这里decision_tree/ID3.py获得

运行结果

李航《统计学习方法》——第五章 决策树模型_第1张图片


C4.5算法代码

# encoding=utf-8

import cv2
import time
import numpy as np
import pandas as pd


from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score

# 二值化
def binaryzation(img):
    cv_img = img.astype(np.uint8)
    cv2.threshold(cv_img,50,1,cv2.THRESH_BINARY_INV,cv_img)
    return cv_img

def binaryzation_features(trainset):
    features = []

    for img in trainset:
        img = np.reshape(img,(28,28))
        cv_img = img.astype(np.uint8)

        img_b = binaryzation(cv_img)
        # hog_feature = np.transpose(hog_feature)
        features.append(img_b)

    features = np.array(features)
    features = np.reshape(features,(-1,feature_len))

    return features


class Tree(object):
    def __init__(self,node_type,Class = None, feature = None):
        self.node_type = node_type  # 节点类型(internal或leaf)
        self.dict = {} # dict的键表示特征Ag的可能值ai,值表示根据ai得到的子树 
        self.Class = Class  # 叶节点表示的类,若是内部节点则为none
        self.feature = feature # 表示当前的树即将由第feature个特征划分(即第feature特征是使得当前树中信息增益最大的特征)

    def add_tree(self,key,tree):
        self.dict[key] = tree

    def predict(self,features): 
        if self.node_type == 'leaf' or (features[self.feature] not in self.dict):
            return self.Class

        tree = self.dict.get(features[self.feature])
        return tree.predict(features)

# 计算数据集x的经验熵H(x)
def calc_ent(x):
    x_value_list = set([x[i] for i in range(x.shape[0])])
    ent = 0.0
    for x_value in x_value_list:
        p = float(x[x == x_value].shape[0]) / x.shape[0]
        logp = np.log2(p)
        ent -= p * logp

    return ent

# 计算条件熵H(y/x)
def calc_condition_ent(x, y):
    x_value_list = set([x[i] for i in range(x.shape[0])])
    ent = 0.0
    for x_value in x_value_list:
        sub_y = y[x == x_value]
        temp_ent = calc_ent(sub_y)
        ent += (float(sub_y.shape[0]) / y.shape[0]) * temp_ent

    return ent

# 计算信息增益
def calc_ent_grap(x,y):
    base_ent = calc_ent(y)
    condition_ent = calc_condition_ent(x, y)
    ent_grap = base_ent - condition_ent

    return ent_grap

# C4.5算法
def recurse_train(train_set,train_label,features):

    LEAF = 'leaf'
    INTERNAL = 'internal'

    # 步骤1——如果训练集train_set中的所有实例都属于同一类Ck
    label_set = set(train_label)
    if len(label_set) == 1:
        return Tree(LEAF,Class = label_set.pop())

    # 步骤2——如果特征集features为空
    class_len = [(i,len(list(filter(lambda x:x==i,train_label)))) for i in range(class_num)] # 计算每一个类出现的个数
    (max_class,max_len) = max(class_len,key = lambda x:x[1])

    if len(features) == 0:
        return Tree(LEAF,Class = max_class)

    # 步骤3——计算信息增益,并选择信息增益最大的特征
    max_feature = 0
    max_gda = 0
    D = train_label
    for feature in features:
        # print(type(train_set))
        A = np.array(train_set[:,feature].flat) # 选择训练集中的第feature列(即第feature个特征)
        gda = calc_ent_grap(A,D)
        if calc_ent(A) != 0:  ####### 计算信息增益比,这是与ID3算法唯一的不同
            gda /= calc_ent(A)
        if gda > max_gda:
            max_gda,max_feature = gda,feature

    # 步骤4——信息增益小于阈值
    if max_gda < epsilon:
        return Tree(LEAF,Class = max_class)

    # 步骤5——构建非空子集
    sub_features = list(filter(lambda x:x!=max_feature,features))
    tree = Tree(INTERNAL,feature=max_feature)

    max_feature_col = np.array(train_set[:,max_feature].flat)
    feature_value_list = set([max_feature_col[i] for i in range(max_feature_col.shape[0])]) # 保存信息增益最大的特征可能的取值 (shape[0]表示计算行数)
    for feature_value in feature_value_list:

        index = []
        for i in range(len(train_label)):
            if train_set[i][max_feature] == feature_value:
                index.append(i)

        sub_train_set = train_set[index]
        sub_train_label = train_label[index]

        sub_tree = recurse_train(sub_train_set,sub_train_label,sub_features)
        tree.add_tree(feature_value,sub_tree)

    return tree

def train(train_set,train_label,features):
    return recurse_train(train_set,train_label,features)

def predict(test_set,tree):
    result = []
    for features in test_set:
        tmp_predict = tree.predict(features)
        result.append(tmp_predict)
    return np.array(result)


class_num = 10  # MINST数据集有10种labels,分别是“0,1,2,3,4,5,6,7,8,9”
feature_len = 784  # MINST数据集每个image有28*28=784个特征(pixels)
epsilon = 0.001  # 设定阈值

if __name__ == '__main__':

    print("Start read data...")

    time_1 = time.time()

    raw_data = pd.read_csv('../data/train.csv', header=0)  # 读取csv数据
    data = raw_data.values

    imgs = data[::, 1::]
    features = binaryzation_features(imgs) # 图片二值化(很重要,不然预测准确率很低)
    labels = data[::, 0]

    # 避免过拟合,采用交叉验证,随机选取33%数据作为测试集,剩余为训练集
    train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.33, random_state=0)
    time_2 = time.time()
    print('read data cost %f seconds' % (time_2 - time_1))

    # 通过C4.5算法生成决策树
    print('Start training...')
    tree = train(train_features,train_labels,list(range(feature_len)))
    time_3 = time.time()
    print('training cost %f seconds' % (time_3 - time_2))

    print('Start predicting...')
    test_predict = predict(test_features,tree)
    time_4 = time.time()
    print('predicting cost %f seconds' % (time_4 - time_3))

    # print("预测的结果为:")
    # print(test_predict)
    for i in range(len(test_predict)):
        if test_predict[i] == None:
            test_predict[i] = epsilon
    score = accuracy_score(test_labels, test_predict)
print("The accruacy score is %f" % score)

代码可从这里decision_tree/C45.py获得

运行结果

李航《统计学习方法》——第五章 决策树模型_第2张图片


CART算法代码(用sklearn实现)

# encoding=utf-8

import pandas as pd
import time

from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score

from sklearn.tree import DecisionTreeClassifier



if __name__ == '__main__':

    print("Start read data...")
    time_1 = time.time()

    raw_data = pd.read_csv('../data/train.csv', header=0) 
    data = raw_data.values

    features = data[::, 1::]
    labels = data[::, 0]

    # 随机选取33%数据作为测试集,剩余为训练集
    train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.33, random_state=0)

    time_2 = time.time()
    print('read data cost %f seconds' % (time_2 - time_1))


    print('Start training...') 
    # criterion可选‘gini’, ‘entropy’,默认为gini(对应CART算法),entropy为信息增益(对应ID3算法)
    clf = DecisionTreeClassifier(criterion='gini') 
    clf.fit(train_features,train_labels)
    time_3 = time.time()
    print('training cost %f seconds' % (time_3 - time_2))


    print('Start predicting...')
    test_predict = clf.predict(test_features)
    time_4 = time.time()
    print('predicting cost %f seconds' % (time_4 - time_3))


    score = accuracy_score(test_labels, test_predict)
print("The accruacy score is %f" % score)

代码可从这里decision_tree/decision_tree_sklearn.py获得

运行结果

李航《统计学习方法》——第五章 决策树模型_第3张图片

你可能感兴趣的:(机器学习)