强化学习(Deep Q Network, DQN)是一种融合了神经网络和Q learning的方法。实现不经过supervision,让机器学会做某件事情(如AlphaGo)。
两种使得DQN变得很强大的因素:
1、Experience replay:随机抽取以前的经历进行学习
2、Fixed Q-targets:
接下来,将介绍如何在PyTorch中使用强化学习DQN。
接下来将实现gym模块中让机器人自己学会将杆子立起来。
示例代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
import gym
# 超参数
BATCH_SIZE = 32
LR = 0.01 # learning rate
# 强化学习的参数
EPSILON = 0.9 # greedy policy
GAMMA = 0.9 # reward discount
TARGET_REPLACE_ITER = 100 # target update frequency
MEMORY_CAPACITY = 2000
# 导入实验环境
env = gym.make('CartPole-v0')
env = env.unwrapped
N_ACTIONS = env.action_space.n
N_STATES = env.observation_space.shape[0]
class Net(nn.Module):
def __init__(self, ):
super(Net, self).__init__()
self.fc1 = nn.Linear(N_STATES, 10)
self.fc1.weight.data.normal_(0, 0.1) # 初始化
self.out = nn.Linear(10, N_ACTIONS)
self.out.weight.data.normal_(0, 0.1) # 初始化
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
actions_value = self.out(x)
return actions_value
class DQN(object):
def __init__(self):
self.eval_net, self.target_net = Net(), Net()
# 记录学习到多少步
self.learn_step_counter = 0 # for target update
self.memory_counter = 0 # for storing memory
# 初始化memory
self.memory = np.zeros((MEMORY_CAPACITY, N_STATES * 2 + 2))
self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR)
self.loss_func = nn.MSELoss()
def choose_action(self, x):
x = Variable(torch.unsqueeze(torch.FloatTensor(x), 0))
if np.random.uniform() < EPSILON:
action_value = self.eval_net.forward(x)
action = torch.max(action_value, 1)[1].data.numpy()[0, 0]
else: # random
action = np.random.randint(0, N_ACTIONS)
return action
# s:当前状态, a:动作, r:reward奖励, s_:下一步状态
def store_transaction(self, s, a, r, s_):
transaction = np.hstack((s, [a, r], s_))
# replace the old memory with new memory
index = self.memory_counter % MEMORY_CAPACITY
self.memory[index, :] = transaction
self.memory_counter += 1
def learn(self):
# target net update
if self.learn_step_counter % TARGET_REPLACE_ITER == 0:
self.target_net.load_state_dict(self.eval_net.state_dict())
sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE)
b_memory = self.memory[sample_index, :]
b_s = Variable(torch.FloatTensor(b_memory[:, :N_STATES]))
b_a = Variable(torch.LongTensor(b_memory[:, N_STATES: N_STATES+1].astype(int)))
b_r = Variable(torch.FloatTensor(b_memory[:, N_STATES + 1: N_STATES+2]))
b_s_ = Variable(torch.FloatTensor(b_memory[:, -N_STATES: ]))
q_eval = self.eval_net(b_s).gather(1, b_a)
q_next = self.target_net(b_s_).detach()
q_target = b_r + GAMMA * q_next.max(1)[0]
loss = self.loss_func(q_eval, q_target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
dqn = DQN()
print('\nCollecting experience...')
for i_episode in range(4000):
s = env.reset()
while True:
env.render()
a = dqn.choose_action(s)
# take action
s_, r, done, info = env.step(a)
# modify the reward
x, x_dot, theta, theta_dot = s_
r1 = (env.x_threshold - abs(x)) / env.x_threshold - 0.8
r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5
r = r1 + r2
dqn.store_transaction(s, a, r, s_)
if dqn.memory_counter > MEMORY_CAPACITY:
dqn.learn()
if done:
break
s = s_
实验效果: