- 【论文阅读】Model Stealing Attacks Against Inductive Graph Neural Networks(2021)
Bosenya12
科研学习模型窃取论文阅读图神经网络模型窃取
摘要Manyreal-worlddata(真实世界的数据)comeintheformofgraphs(以图片的形式).Graphneuralnetworks(GNNs图神经网络),anewfamilyofmachinelearning(ML)models,havebeenproposedtofullyleveragegraphdata(充分利用图数据)tobuildpowerfulapplicat
- 林轩田机器学习基石 - 学习笔记4 - 机器学习的可行性
Spareribs
@[TOC]一LearningisImpossible首先,考虑这样一个例子,如下图所示,有3个label为-1的九宫格和3个label为+1的九宫格。根据这6个样本,提取相应label下的特征,预测右边九宫格是属于-1还是+1?结果是,如果依据对称性,我们会把它归为+1;如果依据九宫格左上角是否是黑色,我们会把它归为-1。除此之外,还有根据其它不同特征进行分类,得到不同结果的情况。而且,这些分类
- 机器为什么能学习(上)
ringotc
本篇文章是台湾大学《机器学习基石上》的课程笔记。以PLA算法为例,推导证明机器学习的可行性。问题概述机器学习在当前发展得很快,我们不由得发问:为什么这种算法是可行的。我们说机器学习算法是可行的,是指它的损失函数值很小。比如在回归问题里,我们的目标是让我们用更为数学化的语言表述这件事情:首先定义一下本文需要用到的数学符号我们让本质上就是要使得足够小且。我们这篇文章需要证明的两个保证机器学习可行的结论
- 林轩田机器学习基石课程笔记1 -The Learing Problem
Spareribs
一什么是机器学习什么是“学习”?学习就是人类通过观察、积累经验,掌握某项技能或能力。就好像我们从小学习识别字母、认识汉字,就是学习的过程。而机器学习(MachineLearning),顾名思义,就是让机器(计算机)也能向人类一样,通过观察大量的数据和训练,发现事物规律,获得某种分析问题、解决问题的能力。在这里插入图片描述什么是“机器学习”?机器学习可以被定义为:Improvingsomeperfo
- 惊为天人,NumPy手写全部主流机器学习模型,代码超3万行
小白学视觉
python神经网络机器学习人工智能深度学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达本文转自|深度学习这件小事用NumPy手写所有主流ML模型,普林斯顿博士后DavidBourgin最近开源了一个非常剽悍的项目。超过3万行代码、30多个模型,这也许能打造「最强」的机器学习基石?NumPy作为Python生态中最受欢迎的科学计算包,很多读者已经非常熟悉它了。它为Python提供高效率的多维数组计算,并提供了一系列
- 机器学习基石第九讲:linear regression
Marcovaldo
机器学习机器学习基石笔记机器学习
博客已经迁移至Marcovaldo’sblog(http://marcovaldong.github.io/)机器学习基石第十讲介绍线性回归问题(linearregressionproblem),从这一讲开始课程介绍具体的机器学习算法。后面的大部分内容,博主已经学过,所以笔记可能会简略。LinearRegressionProblem借助信用卡发放的问题来介绍线性回归,不过这一次不再是分类,而是要让
- 端杂七杂八系列篇四-Java8篇
Dormiveglia-flx
后端杂七杂八系列springjava后端springbootspringcloud
后端杂七杂八系列篇四-Java8篇①Lombok插件①@RequiredArgsConstructor②@SneakyThrows③@UtilityClass④@Cleanup②Lambda4个常用的内置函数①Function-接受一个输入参数并返回一个结果②Consumer-接受一个输入参数,并执行某种操作(无返回值)③Supplier-不接受任何参数,但产生一个结果④Predicate-接受一
- 机器学习基石课程总结
半亩房顶
前前后后也磨蹭了有一个月左右吧,机器学习基石终于是看完了。其实还有很多东西并不很懂,尤其是好多数学问题,不会的依然很多。但是这个课程我是打算就这么结束了,带着一堆的坑。原因如下:不宜拉长战线。数据问题肯定是需要补的,但是现阶段并不准备在数学上下很多功夫,战线拉得太长只会前支后绌。选择性学习。有些东西其实是暂时不需要甚至不宜学习的。故而暂且放下。当然,需要直面时候不能逃避的。目的性或者说功利性使然。
- 3.3 Types of Learning- Learning with Different Protocol |机器学习基石(林轩田)-学习笔记
努力奋斗的durian
文章原创,最近更新:2018-07-18学习链接:3.3TypesofLearning-LearningwithDifferentProtocol学习参考链接:1、台湾大学林轩田机器学习基石课程学习笔记3--TypesofLearning按照不同的协议,机器学习可以分为三种类型:BatchLearningOnlineActiveLearning1.BatchLearningbatchlearnin
- 1.5 The Leaming Problem-Machine Leaming and other Fields|机器学习基石(林轩田)-学习笔记
努力奋斗的durian
文章原创,最近更新:2018-06-27学习链接:1.5TheLeamingProblem-MachineLeamingandotherFields1.MachineLearningandDataMining(机器学习与数据挖掘)讲完了机器学习完整的流程,下面将一下机器学习与其他相关领域的关系第一个讲的领域就是数据挖掘,数据挖掘与机器学习有什么不一样,如下:机器学习是用资料找出一个假说g,然后跟我
- 关于我对归纳偏置(inductive bias)的概念和应用的详细总结
小桥流水---人工智能
人工智能机器学习算法人工智能
归纳偏置(inductivebias)1.归纳偏置(inductivebias)的概念2.归纳偏置(inductivebias)的应用1.归纳偏置(inductivebias)的概念归纳偏置(inductivebias)是指在机器学习算法中对模型进行偏好选择的先验假设或限制。这些偏好和限制可以通过算法设计、模型选择或数据预处理等方法来实现。归纳偏置在训练过程中引导模型更可能学习到特定类型的函数或概
- Pytest中使用Fixture替换Unittest的Setupclass及Pytest使用装饰器应用参数化
zljun8210
自动化测试pytestpytest
1类里使用FixturePytest中夹具(Fixture)有几种生命周期:function->model->class->session->packages,其中默认为function。importpytestfromCommon.loggerimportLogfromCommon.Operatorimport*fromCommon.LoginsimportLoginsfromPage.Cred
- 【C++搜索练习】第一周 深搜/递归的基本运用
qcqzz233
C++算法练习c++开发语言深度优先算法
在C++的各种题目中,搜索题绝对占了一大部分。这个系列将由易到难,一步步讲解C++中关于搜索的各种运用(顺便帮作者也准备一下今年的CSP)。那么话不多说,我们开始做题吧。A.记忆化搜索-function题目传送门:Function-洛谷很简单的一道模拟搜索题,w函数按照题意就这么写:intw(inta,intb,intc){if(a20||b>20||c>20)returnw(20,20,20);
- 论文笔记:详解图注意力网络(GAT)
图学习的小张
图数据挖掘学习路线论文笔记论文阅读python
整理了GAT(ICLR2018GraphAttentionNetwork)论文的阅读笔记背景图注意力网络的构建模块与其他模型对比实验背景 图神经网络的任务可以分为直推式(Transductive)学习与归纳(Inductive)学习:Inductivelearning,翻译成中文可以叫做“归纳式学习”,就是从已有数据中归纳出模式来,应用于新的数据和任务。在图学习的训练过程中,看不到没有标注的节点
- Inductive & Transductive
小张是菜鸟
论文笔记机器学习深度学习人工智能
Inductive(归纳学习)&Transductive(传导学习)Inductive学习是从训练数据中推断出一般性规律,然后用这些规律预测新的未知数据。换句话说,它是基于一些观察到的例子来推断一般规律。Transductive学习则是利用已知数据的标签来直接推断未知数据的标签。Inductive学习更适合于大规模数据集的训练,因为它可以推断出一般规律并将其应用于新数据。而Transductive
- 机器学习--------考试复习笔记
懒懒的程序媛
机器学习
1.机器学习基石–学习的可行性本文主要是通过Hoeffding不等式证明了当模型的所有hypothesis的个数M为有限个时,样本数目N足够大时,就能够保证泛化误差Eout(h)和训练误差Ein(h)很接近。这时候只要找到一个hypothesis使得Ein(h)很小,那么Eout(h)也会很小,从而达到学习的目的。当然有一个大前提就是训练样本和测试样本必须要在同一分布下产生,否则学习无从谈起。Th
- MATLAB教学__03Script Writing,Structured Programming and User-defined Function-撰写脚本,结构化编程和用户自定义函数
Lau师傅
MATLAB学习笔记matlab开发语言笔记学习
文章目录前言一、ScriptWriting-撰写脚本程式1.MATLABScript-MATLAB脚本程式2.StartAScript(.m)File-新建脚本文档(.m)3.ScriptEditor-脚本编辑器4.常用功能介绍5.ScriptFlow-脚本流程二、StructuredProgramming-结构化编程1.FlowControl-流程控制(1)Review(2)Relational
- python机器学习算法实训 - (二) 手写岭回归和lasso回归
印第安老斑鸠啾
机器学习算法机器学习python数据分析数据挖掘
是的,我来更新了。线性模型之间还是很相似的,有了线性回归,其他的也好展开了。理论部分两张图来自林轩田老师的机器学习基石,向同学们推荐一手。岭回归和Lasso回归1.1什么是过拟合如图所示,在数据量不够大的情况下,如果我们使用一个高阶多项式(图中红色曲线所示),例如10阶,对目标函数(蓝色曲线)进行拟合。拟合曲线波动很大,虽然Ein很小,但是Eout很大,也就造成了过拟合现象。我们看似在数据集上获得
- Java函数式接口(Consumer、Function、Predicate、Supplier)详解及代码示例
干净的坏蛋
Javajavapython开发语言
函数式接口java.util.function:Consumer:消费型函数接口voidaccept(Tt)Function:函数型接口Rapply(Tt)Predicate:判断型接口booleantest(Tt)Supplier:供给型接口Tget()Consumer-消费型函数接口该接口代表了一个接受一个参数并且不返回结果的操作。方法签名:voidaccept(Tt)Function-函数型
- 收集一些有用的网址
Sundw_RUC
1.吴恩达深度学习课后作业汇总2.机器学习基石课后练习汇总3.sublimetext主题生成器持续更新
- Constant current source count
Madelines
Theconstantcurrentsourceisawide-spectrum,high-precisionACsteadycurrentpowersupplywithfastresponse,highconstantcurrentaccuracy,long-termstableoperation,andsuitableforvariousloads(resistance,inductive,c
- 林轩田机器学习基石课程笔记3 - 机器学习类型
Spareribs
上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA。PLA能够在平面中选择一条直线将样本数据完全正确分类。而对于线性不可分的情况,可以使用PocketAlgorithm来处理。本节课将主要介绍一下机器学习有哪些种类,并进行归纳。主要的视频讲解:林轩田机器学习基石P10林轩田机器学习基石P11林轩田机器学习基石P12林轩田机器学习基石P13一LearningwithDifferentOut
- [论文精读]Inductive Representation Learning on Large Graphs
夏莉莉iy
人工智能深度学习计算机视觉学习机器学习
论文原文:Inductiverepresentationlearningonlargegraphs|Proceedingsofthe31stInternationalConferenceonNeuralInformationProcessingSystems(acm.org)英文是纯手打的!论文原文的summarizingandparaphrasing。可能会出现难以避免的拼写错误和语法错误,若有
- Inductive reactance calculator
逍遥alan
Thisisaprofessionalcomputationalinductivereactancecalculator.TheusercaninputthefrequencyandinductancetocalculatetheACinductivereactance.Theso-calledinductance,theinteractionbetweenthecurrentandthecoil
- Transductive和Inductive的区别
双七_
关于Transductive和Inductive维基百科上有一段简洁扼要的定义:Transductionisreasoningfromobeserved,specific(training)casestospecific(test)cases.Incontrast,inductionisreasoningfromobeservedtrainingcasestogerneralrules,which
- LearnLua - 学习笔记
Jave.Lin
lualualua基础学习
文章目录安装环境其他系统嵌入lua的方式来使用运行lua示例Helloworldnotes-注释io.write-输出流内容string.format-字符格式化function-函数single-line-function-单行写法的函数multi-lines-function-多行写法的函数closure-闭包,匿名函数variable-变量define&undefvariable-定义&删除
- 机器学习笔记(5,6)--林轩田机器学习基石课程
数学系的计算机学生
这两个lecture,集中证明了,当我的hepothesis个数看起来有无限多种时,也就是前面讲到的,找一个超平面(直线)做二元划分问题时,超平面(直线)应该有无限多个,那PLA还能否能learning的问题。具体的证明过程不在复述了,提一下我认为最重要的一点:当出现break的时候,就意味着,hepothesisset的个数会是多项式多个,具体是通过动态规划bound住上界的方法。以后等基石看完
- Substructure‑aware subgraph reasoning for inductive relation prediction
小蜗子
知识图谱的结构动态补全知识图谱人工智能
摘要关系预测的目的是推断知识图中实体之间缺失的关系,其中归纳关系预测因其适用于新兴实体的有效性而广受欢迎。大多数现有方法学习逻辑组合规则或利用子图来预测缺失关系。尽管在性能方面已经取得了很大的进展,但目前的模型仍然不是最优的,因为它们捕获拓扑信息的能力有限,而拓扑信息对局部关系预测至关重要。为了解决这一问题,我们提出了一种新的关系预测方法——子结构感知子图推理,该方法将子图的子结构信息融入到推理过
- Inductive Relation Prediction with Logical Reasoning Using Contrastive Representations
小蜗子
知识图谱的结构动态补全深度学习机器学习人工智能
摘要知识图(KGs)中的关系预测旨在预测不完全三元组中的缺失关系,而主流嵌入范式在测试过程中对未见实体的处理存在限制。在现实场景中,归纳设置更常见,因为训练过程中的实体是有限的。以往的方法通过隐式逻辑在组合逻辑规则中捕获归纳能力,但难以准确地获取组合逻辑规则的独立于实体的关系语义,也难以解决关系语义稀缺性导致的逻辑监督不足的问题。为此,我们提出了一种新颖的基于图卷积网络(GCN)的LogCo模型,
- 机器学习技法(二)
宣的写字台
《机器学习技法》是国立台湾大学林轩田讲授的一门课程,课程的上集是《机器学习基石》。相关资源可以在youtube找到,也可在评论区索要云盘链接。本文主要是我学完一遍基石&技法后的笔记梳理,如果存疑请以原课程讲授内容为准,欢迎讨论~[注]本文仅适用于帮助复习,不适用于代替视频课程。技法分为3个部分,分别为●核模型:嵌入大量特征(6小节)●融合模型:融合预测性特征(5小节)●抽取模型:提取隐性特征(4小
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt